PIPELINE
PentixaPharm is proceeding its development pipeline in lymphoma located in the central nervous system in an advanced diagnostic trial with the PET-based agent PentixaFor as well as an early phase therapeutic trial with the targeted radiotherapy agent PentixaTher.
PentixaFor, a small peptide based [68Ga]Gallium PET imaging agent, addresses specifically the chemokine 4 receptor, expressed by a multitude of malignant diseases in oncological, cardiovascular and inflammatory indications allowing for personalised molecular imaging with high specificity and sensitivity.
PentixaTher, the complementary therapeutic agent to PentixaFor, equipped with the high energy beta emitter [90Y]Yttrium targets oncological malignancies via internal peptide receptor radioligand therapy.
The lead development for PentixaFor and PentixaTher focuses on hematological indications targeting unmet medical needs for patients and offers benefits over existing therapies via a reduced side effect profile.
PentixaTec, a small peptide based [99mTc]Technetium SPECT imaging agent, allowing for affordable and easy-to-implement chemokine 4 receptor directed imaging in oncological, cardiovascular and inflammatory indications.
LITERATURE
Albano, D., Dondi, F., Bertagna, F., & Treglia, G. (2022). The Role of [68Ga]Ga-Pentixafor PET/CT or PET/MRI in Lymphoma: A Systematic Review. Cancers, 14(15), 3814. https://doi.org/10.3390/cancers14153814
Buck, A. K., Stolzenburg, A., Hänscheid, H., Schirbel, A., Lückerath, K., Schottelius, M., Wester, H.-J., & Lapa, C. (2017). Chemokine receptor—Directed imaging and therapy. Methods (San Diego, Calif.), 130, 63–71. https://doi.org/10.1016/j.ymeth.2017.09.002
Eiber, M., Kratochwil, C., Lapa, C., & Brenner, W. (2021). Nuklearmedizinische Theranostik. Der Onkologe. https://doi.org/10.1007/s00761-021-00956-1
Hadebe, B., Sathekge, M. M., Aldous, C., & Vorster, M. (2022). Current Status of 68Ga-Pentixafor in Solid Tumours. Diagnostics, 12(9), 2135. https://doi.org/10.3390/diagnostics12092135
Herrmann, K., Schwaiger, M., Lewis, J. S., Solomon, S. B., McNeil, B. J., Baumann, M., Gambhir, S. S., Hricak, H., & Weissleder, R. (2020). Radiotheranostics: A roadmap for future development. The Lancet Oncology, 21(3), e146–e156. https://doi.org/10.1016/S1470-2045(19)30821-6
Jamet, B., Bailly, C., Carlier, T., Touzeau, C., Nanni, C., Zamagni, E., Barré, L., Michaud, A.-V., Chérel, M., Moreau, P., Bodet-Milin, C., & Kraeber-Bodéré, F. (2019). Interest of Pet Imaging in Multiple Myeloma. Frontiers in Medicine, 6, 69. https://doi.org/10.3389/fmed.2019.00069
Kircher, M., Herhaus, P., Schottelius, M., Buck, A. K., Werner, R. A., Wester, H.-J., Keller, U., & Lapa, C. (2018). CXCR4-directed theranostics in oncology and inflammation. Annals of Nuclear Medicine, 32(8), 503–511. https://doi.org/10.1007/s12149-018-1290-8
Man, F., Gawne, P. J., & T.M. de Rosales, R. (2019). Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Advanced Drug Delivery Reviews, 143, 134–160. https://doi.org/10.1016/j.addr.2019.05.012
Mayerhoefer, M. E., Archibald, S. J., Messiou, C., Staudenherz, A., Berzaczy, D., & Schöder, H. (2020). MRI and PET/MRI in hematologic malignancies. Journal of Magnetic Resonance Imaging, 51(5), 1325–1335. https://doi.org/10.1002/jmri.26848
Mesguich, C., Zanotti-Fregonara, P., & Hindié, E. (2016). New Perspectives Offered by Nuclear Medicine for the Imaging and Therapy of Multiple Myeloma. Theranostics, 6(2), 287–290. https://doi.org/10.7150/thno.14400
Narula, J., Dilsizian, V., & Chandrashekhar, Y. (2015). Molecular Imaging: From Deep Pearl Diving to Enlightenment. JACC. Cardiovascular Imaging, 8(12), 1472–1474. https://doi.org/10.1016/j.jcmg.2015.11.004
Pandit-Taskar, N. (2018). Functional Imaging Methods for Assessment of Minimal Residual Disease in Multiple Myeloma: Current Status and Novel ImmunoPET Based Methods. Seminars in Hematology, 55(1), 22–32. https://doi.org/10.1053/j.seminhematol.2018.02.009
Schottelius, M., Herrmann, K., & Lapa, C. (2021). In Vivo Targeting of CXCR4-New Horizons. Cancers, 13(23), Article 23. https://doi.org/10.3390/cancers13235920
Toczek, J., & Riou, L. (2020). Considerations on PET/MR imaging of carotid plaque inflammation with 68Ga-Pentixafor. Journal of Nuclear Cardiology. https://doi.org/10.1007/s12350-020-02354-3
Walenkamp, A. M. E., Lapa, C., Herrmann, K., & Wester, H.-J. (2017). CXCR4 Ligands: The Next Big Hit? Journal of Nuclear Medicine, 58(Supplement 2), 77S-82S. https://doi.org/10.2967/jnumed.116.186874
Preclinical
Demmer, O., Dijkgraaf, I., Schumacher, U., Marinelli, L., Cosconati, S., Gourni, E., Wester, H.-J., & Kessler, H. (2011). Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4. Journal of Medicinal Chemistry, 54(21), 7648–7662. https://doi.org/10.1021/jm2009716
Demmer, O., Gourni, E., Schumacher, U., Kessler, H., & Wester, H.-J. (2011). PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem, 6(10), 1789–1791. https://doi.org/10.1002/cmdc.201100320
Derlin, T., Sedding, D. G., Dutzmann, J., Haghikia, A., König, T., Napp, L. C., Schütze, C., Owsianski-Hille, N., Wester, H.-J., Kropf, S., Thackeray, J. T., Bankstahl, J. P., Geworski, L., Ross, T. L., Bauersachs, J., & Bengel, F. M. (2018). Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [68Ga]pentixafor PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 45(11), 1934–1944. https://doi.org/10.1007/s00259-018-4076-2
Grosse, G. M., Bascuñana, P., Schulz-Schaeffer, W. J., Teebken, O. E., Wilhelmi, M., Worthmann, H., Ross, T. L., Wester, H.-J., Kropf, S., Derlin, T., Bengel, F. M., Bankstahl, J. P., & Weissenborn, K. (2018). Targeting Chemokine Receptor CXCR4 and Translocator Protein for Characterization of High-Risk Plaque in Carotid Stenosis Ex Vivo. Stroke, 49(8), 1988–1991. https://doi.org/10.1161/STROKEAHA.118.021070
Gourni, E., Demmer, O., Schottelius, M., D’Alessandria, C., Schulz, S., Dijkgraaf, I., Schumacher, U., Schwaiger, M., Kessler, H., & Wester, H.-J. (2011). PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 52(11), 1803–1810. https://doi.org/10.2967/jnumed.111.098798
Habringer, S., Lapa, C., Herhaus, P., Schottelius, M., Istvanffy, R., Steiger, K., Slotta-Huspenina, J., Schirbel, A., Hänscheid, H., Kircher, S., Buck, A. K., Götze, K., Vick, B., Jeremias, I., Schwaiger, M., Peschel, C., Oostendorp, R., Wester, H.-J., Grigoleit, G.-U., & Keller, U. (2018). Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics. Theranostics, 8(2), 369–383. https://doi.org/10.7150/thno.21397
Herhaus, P., Habringer, S., Vag, T., Steiger, K., Slotta-Huspenina, J., Gerngroß, C., Wiestler, B., Wester, H.-J., Schwaiger, M., & Keller, U. (2017). Response assessment with the CXCR4-directed positron emission tomography tracer [68Ga]Pentixafor in a patient with extranodal marginal zone lymphoma of the orbital cavities. EJNMMI Research, 7(1), 51. https://doi.org/10.1186/s13550-017-0294-z
Herrmann, K., Lapa, C., Wester, H.-J., Schottelius, M., Schiepers, C., Eberlein, U., Bluemel, C., Keller, U., Knop, S., Kropf, S., Schirbel, A., Buck, A. K., & Lassmann, M. (2015). Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 56(3), 410–416. https://doi.org/10.2967/jnumed.114.151647
Hyafil, F., Pelisek, J., Laitinen, I., Schottelius, M., Mohring, M., Döring, Y., van der Vorst, E. P. C., Kallmayer, M., Steiger, K., Poschenrieder, A., Notni, J., Fischer, J., Baumgartner, C., Rischpler, C., Nekolla, S. G., Weber, C., Eckstein, H.-H., Wester, H.-J., & Schwaiger, M. (2017). Imaging the Cytokine Receptor CXCR4 in Atherosclerotic Plaques with the Radiotracer 68Ga-Pentixafor for PET. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 58(3), 499–506. https://doi.org/10.2967/jnumed.116.179663
Liu, D., Li, M., Bellizzi, A., Menda, Y., Lee, D., Nourmahnad, K., Ghobrial, S., Schultz, M., & ODorisio, M. S. (2018). Preclinical evaluation of CXCR4 as novel radio-theranostic target for high grade neuroendocrine and neuroblastoma tumors. Journal of Nuclear Medicine, 59(supplement 1), 1313–1313.
Martin, R., Jüttler, S., Müller, M., & Wester, H.-J. (2014). Cationic eluate pretreatment for automated synthesis of [68Ga]CPCR4.2. Nuclear Medicine and Biology, 41(1), 84–89. https://doi.org/10.1016/j.nucmedbio.2013.09.002
Meester, E. J., de Blois, E., Krenning, B. J., van der Steen, A. F. W., Norenberg, J. P., van Gaalen, K., Bernsen, M. R., de Jong, M., & van der Heiden, K. (2021). Autoradiographical assessment of inflammation-targeting radioligands for atherosclerosis imaging: Potential for plaque phenotype identification. EJNMMI Research, 11(1), 27. https://doi.org/10.1186/s13550-021-00772-z
Philipp-Abbrederis, K., Herrmann, K., Knop, S., Schottelius, M., Eiber, M., Lückerath, K., Pietschmann, E., Habringer, S., Gerngroß, C., Franke, K., Rudelius, M., Schirbel, A., Lapa, C., Schwamborn, K., Steidle, S., Hartmann, E., Rosenwald, A., Kropf, S., Beer, A. J., … Keller, U. (2015). In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Molecular Medicine, 7(4), 477–487. https://doi.org/10.15252/emmm.201404698
Poschenrieder, A., Osl, T., Schottelius, M., Hoffmann, F., Wirtz, M., Schwaiger, M., & Wester, H.-J. (2016). First 18F-Labeled Pentixafor-Based Imaging Agent for PET Imaging of CXCR4 Expression In Vivo. Tomography (Ann Arbor, Mich.), 2(2), 85–93. https://doi.org/10.18383/j.tom.2016.00130
Poschenrieder, A., Schottelius, M., Schwaiger, M., Kessler, H., & Wester, H.-J. (2016). The influence of different metal-chelate conjugates of pentixafor on the CXCR4 affinity. EJNMMI Research, 6(1), 36. https://doi.org/10.1186/s13550-016-0193-8
Poschenrieder, A., Schottelius, M., Schwaiger, M., & Wester, H.-J. (2016). Preclinical evaluation of [(68)Ga]NOTA-pentixafor for PET imaging of CXCR4 expression in vivo—A comparison to [(68)Ga]pentixafor. EJNMMI Research, 6(1), 70. https://doi.org/10.1186/s13550-016-0227-2
Schwarzenböck, S. M., Stenzel, J., Otto, T., Helldorff, H. V., Bergner, C., Kurth, J., Polei, S., Lindner, T., Rauer, R., Hohn, A., Hakenberg, O. W., Wester, H. J., Vollmar, B., & Krause, B. J. (2017). [68Ga]pentixafor for CXCR4 imaging in a PC-3 prostate cancer xenograft model—Comparison with [18F]FDG PET/CT, MRI and ex vivo receptor expression. Oncotarget, 8(56), 95606–95619. https://doi.org/10.18632/oncotarget.21024
Spreckelmeyer, S., Schulze, O., & Brenner, W. (2020). Fully-automated production of [68Ga]Ga-PentixaFor on the module Modular Lab-PharmTracer. EJNMMI Radiopharmacy and Chemistry, 5. https://doi.org/10.1186/s41181-020-0091-2
Watts, A., Chutani, S., Arora, D., Madivanane, V., Thakur, S., Kamboj, M., & Singh, B. (2021). Automated Radiosynthesis, Quality Control, and Biodistribution of Ga-68 Pentixafor: First Indian Experience. Indian Journal of Nuclear Medicine: IJNM: The Official Journal of the Society of Nuclear Medicine, India, 36(3), 237–244. https://doi.org/10.4103/ijnm.ijnm_216_20
Wester, H. J., Keller, U., Schottelius, M., Beer, A., Philipp-Abbrederis, K., Hoffmann, F., Šimeček, J., Gerngross, C., Lassmann, M., Herrmann, K., Pellegata, N., Rudelius, M., Kessler, H., & Schwaiger, M. (2015). Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics, 5(6), 618–630. https://doi.org/10.7150/thno.11251
Endocrinology
Baz, A. H. C., Wiel, E. van de, Groenewoud, H., Arntz, M., Gotthardt, M., Deinum, J., & Langenhuijsen, J. (2022). CXCR4-directed [68Ga]Ga-PentixaFor PET/CT versus adrenal vein sampling performance: A study protocol for a randomised two-step controlled diagnoStic Trial Ultimately comparing hypertenSion outcome in primary aldosteronism (CASTUS). BMJ Open, 12(8), e060779. https://doi.org/10.1136/bmjopen-2022-060779
Cui, Y., Zhang, Y., Ding, J., Wang, H., Ma, X., Wang, O., Chang, X., Sun, H., Huo, L., & Tong, A. (2019). A Rare Aldosterone-Producing Adenoma Detected by 68Ga-pentixafor PET-CT: A Case Report and Literature Review. Frontiers in Endocrinology, 10, 810. https://doi.org/10.3389/fendo.2019.00810
Ding, J., Tong, A., Zhang, Y., Wen, J., & Huo, L. (2020). Intense 68Ga-Pentixafor Activity in Aldosterone-Producing Adrenal Adenomas. Clinical Nuclear Medicine, 45(4), 336–339. https://doi.org/10.1097/RLU.0000000000002946
Ding, J., Zhang, Y., Wen, J., Zhang, H., Wang, H., Luo, Y., Pan, Q., Zhu, W., Wang, X., Yao, S., Kreissl, M. C., Hacker, M., Tong, A., Huo, L., & Li, X. (2020). Imaging CXCR4 expression in patients with suspected primary hyperaldosteronism. European Journal of Nuclear Medicine and Molecular Imaging. https://doi.org/10.1007/s00259-020-04722-0
Ding, J., Tong, A., Zhang, Y., Wen, J., Zhang, H., Hacker, M., Huo, L., & Li, X. (2021). Functional characterization of adrenocortical masses in nononcological patients using [68Ga]-pentixafor. Journal of Nuclear Medicine. https://doi.org/10.2967/jnumed.121.261964
Gao, Y., Ding, J., Cui, Y., Li, T., Sun, H., Zhao, D., Zhang, Y., Huo, L., & Tong, A. (2022). Functional nodules in primary aldosteronism: Identification of CXCR4 expression with 68Ga-pentixafor PET/CT. European Radiology. https://doi.org/10.1007/s00330-022-09058-x
Heinze, B., Fuss, C. T., Mulatero, P., Beuschlein, F., Reincke, M., Mustafa, M., Schirbel, A., Deutschbein, T., Williams, T. A., Rhayem, Y., Quinkler, M., Rayes, N., Monticone, S., Wild, V., Gomez-Sanchez, C. E., Reis, A.-C., Petersenn, S., Wester, H.-J., Kropf, S., … Hahner, S. (2018). Targeting CXCR4 (CXC Chemokine Receptor Type 4) for Molecular Imaging of Aldosterone-Producing Adenoma. Hypertension, 71(2), 317–325. https://doi.org/10.1161/HYPERTENSIONAHA.117.09975
Hu, J., Xu, T., Shen, H., Song, Y., Yang, J., Zhang, A., Ding, H., Xing, N., Li, Z., Qiu, L., Ma, L., Yang, Y., Feng, Z., Cheng, Q., Wang, Z., Du, Z., He, W., Sun, Y., Li, Q., … Yang, S. (2022). 68Ga-Pentixafor PET/CT for Subtyping Diagnosis of Primary Aldosteronism: A Prospective, Diagnostic Accuracy Study [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-1909614/v1
Hu, J., Xu, T., Shen, H., Song, Y., Yang, J., Zhang, A., Ding, H., Xing, N., Li, Z., Qiu, L., Ma, L., Yang, Y., Feng, Z., Du, Z., He, W., Sun, Y., Cai, J., Li, Q., Chen, Y., … Chongqing Primary Aldosteronism Study (CONPASS) Group. (2023). Accuracy of Gallium-68 Pentixafor Positron Emission Tomography–Computed Tomography for Subtyping Diagnosis of Primary Aldosteronism. JAMA Network Open, 6(2), e2255609. https://doi.org/10.1001/jamanetworkopen.2022.55609
Shu, Q., Deng, M., Chen, Y., Liu, N., & Cai, L. (2022). Imaging Aldosterone-Producing Adrenocortical Carcinoma With 68 Ga-Pentixafor PET/CT. Clinical Nuclear Medicine, 47(8), e572–e573. https://doi.org/10.1097/RLU.0000000000004202
Oncology
Avanesov, M., Karul, M., & Derlin, T. (2015). [68Ga-pentixafor PET: Clinical molecular imaging of chemokine receptor CXCR4 expression in multiple myeloma]. Der Radiologe, 55(10), 829–831. https://doi.org/10.1007/s00117-015-0011-8
Bluemel, C., Hahner, S., Heinze, B., Fassnacht, M., Kroiss, M., Bley, T. A., Wester, H.-J., Kropf, S., Lapa, C., Schirbel, A., Buck, A. K., & Herrmann, K. (2017). Investigating the Chemokine Receptor 4 as Potential Theranostic Target in Adrenocortical Cancer Patients. Clinical Nuclear Medicine, 42(1), e29–e34. https://doi.org/10.1097/RLU.0000000000001435
Breun, M., Monoranu, C. M., Kessler, A. F., Matthies, C., Löhr, M., Hagemann, C., Schirbel, A., Rowe, S. P., Pomper, M. G., Buck, A. K., Wester, H.-J., Ernestus, R.-I., & Lapa, C. (2019). [68Ga]-Pentixafor PET/CT for CXCR4-Mediated Imaging of Vestibular Schwannomas. Frontiers in Oncology, 9, 503. https://doi.org/10.3389/fonc.2019.00503
Buck, A. K., Haug, A., Dreher, N., Lambertini, A., Higuchi, T., Lapa, C., Weich, A., Pomper, M. G., Wester, H.-J., Zehnder, A., Schirbel, A., Samnick, S., Hacker, M., Pichler, V., Hahner, S., Fassnacht, M., Einsele, H., Serfling, S., & Werner, R. A. (2022). Imaging of C-X-C Motif Chemokine Receptor 4 Expression in 690 Patients with Solid or Hematologic Neoplasms using 68 Ga-PentixaFor PET. Journal of Nuclear Medicine, jnumed.121.263693. https://doi.org/10.2967/jnumed.121.263693
Chen, Z., Xue, Q., Huang, C., Yao, S., & Miao, W. (2021). Burkitt Lymphoma/Leukemia Presented on 68Ga-Pentixafor and 18F-FDG PET/CT. Clinical Nuclear Medicine. https://doi.org/10.1097/RLU.0000000000003750
Chen, Z., Yang, A., Zhang, J., Chen, A., Zhang, Y., Huang, C., Chen, S., Yao, S., & Miao, W. (2021). CXCR4-Directed PET/CT with [68Ga]Pentixafor in Central Nervous System Lymphoma: A Comparison with [18F]FDG PET/CT. Molecular Imaging and Biology. https://doi.org/10.1007/s11307-021-01664-3
Cui, Y., Zhang, Y., Ding, J., Wang, H., Ma, X., Wang, O., Chang, X., Sun, H., Huo, L., & Tong, A. (2019). A Rare Aldosterone-Producing Adenoma Detected by 68Ga-pentixafor PET-CT: A Case Report and Literature Review. Frontiers in Endocrinology, 10, 810. https://doi.org/10.3389/fendo.2019.00810
Derlin, T., Jonigk, D., Bauersachs, J., & Bengel, F. M. (2016). Molecular Imaging of Chemokine Receptor CXCR4 in Non-Small Cell Lung Cancer Using 68Ga-Pentixafor PET/CT: Comparison With 18F-FDG. Clinical Nuclear Medicine, 41(4), e204-205. https://doi.org/10.1097/RLU.0000000000001092
Duell, J., Krummenast, F., Schirbel, A., Klassen, P., Samnick, S., Rauert-Wunderlich, H., Rasche, L., Buck, A. K., Wester, H.-J., Rosenwald, A., Einsele, H., Topp, M. S., Lapa, C., & Kircher, M. (2021). Improved primary staging of marginal zone lymphoma by addition of CXCR4-directed PET/CT. Journal of Nuclear Medicine. https://doi.org/10.2967/jnumed.120.257279
Fang, H.-Y., Münch, N. S., Schottelius, M., Ingermann, J., Liu, H., Schauer, M., Stangl, S., Multhoff, G., Steiger, K., Gerngroß, C., Jesinghaus, M., Weichert, W., Kühl, A. A., Sepulveda, A. R., Wester, H.-J., Wang, T. C., & Quante, M. (2018). CXCR4 Is a Potential Target for Diagnostic PET/CT Imaging in Barrett’s Dysplasia and Esophageal Adenocarcinoma. Clinical Cancer Research, 24(5), 1048–1061. https://doi.org/10.1158/1078-0432.CCR-17-1756
Haug, A. R., Leisser, A., Wadsak, W., Mitterhauser, M., Pfaff, S., Kropf, S., Wester, H.-J., Hacker, M., Hartenbach, M., Kiesewetter-Wiederkehr, B., Raderer, M., & Mayerhoefer, M. E. (2019). Prospective non-invasive evaluation of CXCR4 expression for the diagnosis of MALT lymphoma using [68Ga]Ga-Pentixafor-PET/MRI. Theranostics, 9(12), 3653–3658. https://doi.org/10.7150/thno.31032
Heinze, B., Fuss, C. T., Mulatero, P., Beuschlein, F., Reincke, M., Mustafa, M., Schirbel, A., Deutschbein, T., Williams, T. A., Rhayem, Y., Quinkler, M., Rayes, N., Monticone, S., Wild, V., Gomez-Sanchez, C. E., Reis, A.-C., Petersenn, S., Wester, H.-J., Kropf, S., … Hahner, S. (2018). Targeting CXCR4 (CXC Chemokine Receptor Type 4) for Molecular Imaging of Aldosterone-Producing Adenoma. Hypertension (Dallas, Tex.: 1979), 71(2), 317–325. https://doi.org/10.1161/HYPERTENSIONAHA.117.09975
Herhaus, P., Habringer, S., Philipp-Abbrederis, K., Vag, T., Gerngross, C., Schottelius, M., Slotta-Huspenina, J., Steiger, K., Altmann, T., Weißer, T., Steidle, S., Schick, M., Jacobs, L., Slawska, J., Müller-Thomas, C., Verbeek, M., Subklewe, M., Peschel, C., Wester, H.-J., … Keller, U. (2016). Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia. Haematologica, 101(8), 932–940. https://doi.org/10.3324/haematol.2016.142976
Herhaus, P., Habringer, S., Vag, T., Steiger, K., Slotta-Huspenina, J., Gerngroß, C., Wiestler, B., Wester, H.-J., Schwaiger, M., & Keller, U. (2017). Response assessment with the CXCR4-directed positron emission tomography tracer [68Ga]Pentixafor in a patient with extranodal marginal zone lymphoma of the orbital cavities. EJNMMI Research, 7(1), 51. https://doi.org/10.1186/s13550-017-0294-z
Herhaus, P., Lipkova, J., Lammer, F., Yakushev, I., Vag, T., Slotta-Huspenina, J., Habringer, S., Lapa, C., Pukrop, T., Hellwig, D., Wiestler, B., Buck, A. K., Deckert, M., Wester, H.-J., Bassermann, F., Schwaiger, M., Weber, W. A., Menze, B., & Keller, U. (2020). CXCR4-targeted positron emission tomography imaging of central nervous system B-cell lymphoma. Journal of Nuclear Medicine, jnumed.120.241703. https://doi.org/10.2967/jnumed.120.241703
Jacobs, S. M., Wesseling, P., de Keizer, B., Tolboom, N., Ververs, F. F. T., Krijger, G. C., Westerman, B. A., Snijders, T. J., Robe, P. A., & van der Kolk, A. G. (2022). CXCR4 expression in glioblastoma tissue and the potential for PET imaging and treatment with [68Ga]Ga-Pentixafor /[177Lu]Lu-Pentixather. European Journal of Nuclear Medicine and Molecular Imaging, 49(2), 481–491. https://doi.org/10.1007/s00259-021-05196-4
Kiran, M. Y., Apaydin Arikan, E., Sanli, Y., Yegen, G., & Kuyumcu, S. (2021). CXCR4 Expression Demonstrated by 68Ga-Pentixafor PET/CT Imaging in a Case of Systemic Mastocytosis Mimicking Lymphoma. Clinical Nuclear Medicine. https://doi.org/10.1097/RLU.0000000000003817
Kraus, S., Dierks, A., Rasche, L., Kertels, O., Kircher, M., Schirbel, A., Zovko, J., Steinbrunn, T., Tibes, R., Wester, H.-J., Buck, A. K., Einsele, H., Kortüm, K. M., Rosenwald, A., & Lapa, C. (2021). 68Ga-Pentixafor-PET/CT imaging represents a novel approach to detect chemokine receptor CXCR4 expression in myeloproliferative neoplasms. Journal of Nuclear Medicine. https://doi.org/10.2967/jnumed.121.262206
Kraus, S., Klassen, P., Kircher, M., Dierks, A., Habringer, S., Gäble, A., Kortüm, K. M., Weinhold, N., Ademaj-Kospiri, V., Werner, R. A., Schirbel, A., Buck, A. K., Herhaus, P., Wester, H.-J., Rosenwald, A., Weber, W. A., Einsele, H., Keller, U., Rasche, L., & Lapa, C. (2022). Reduced splenic uptake on 68 Ga-Pentixafor-PET/CT imaging in multiple myeloma—A potential imaging biomarker for disease prognosis. Theranostics, 12(13), 5986–5994. https://doi.org/10.7150/thno.75847
Kuyumcu, S., Yilmaz, E., Büyükkaya, F., Özkan, Z. G., & Ünal, S. N. (2018). Imaging of Chemokine Receptor CXCR4 in Mycosis Fungoides Using 68Ga-Pentixafor PET/CT. Clinical Nuclear Medicine, 43(8), 606–608. https://doi.org/10.1097/RLU.0000000000002166
Kuyumcu, S., Isik, E. G., Tiryaki, T. O., Has-Simsek, D., Sanli, Y., Buyukkaya, F., Özkan, Z. G., Kalayoglu-Besisik, S., & Unal, S. N. (2021). Prognostic significance of 68Ga-Pentixafor PET/CT in multiple myeloma recurrence: A comparison to 18F-FDG PET/CT and laboratory results. Annals of Nuclear Medicine. https://doi.org/10.1007/s12149-021-01652-1
Lapa, C., Kircher, S., Schirbel, A., Rosenwald, A., Kropf, S., Pelzer, T., Walles, T., Buck, A. K., Weber, W. A., Wester, H.-J., Herrmann, K., & Lückerath, K. (2017). Targeting CXCR4 with [68Ga]Pentixafor: A suitable theranostic approach in pleural mesothelioma? Oncotarget, 8(57), 96732–96737. https://doi.org/10.18632/oncotarget.18235
Lapa, C., Lückerath, K., Kleinlein, I., Monoranu, C. M., Linsenmann, T., Kessler, A. F., Rudelius, M., Kropf, S., Buck, A. K., Ernestus, R.-I., Wester, H.-J., Löhr, M., & Herrmann, K. (2016). (68)Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma. Theranostics, 6(3), 428–434. https://doi.org/10.7150/thno.13986
Lapa, C., Lückerath, K., Rudelius, M., Schmid, J.-S., Schoene, A., Schirbel, A., Samnick, S., Pelzer, T., Buck, A. K., Kropf, S., Wester, H.-J., & Herrmann, K. (2016). [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer—Initial experience. Oncotarget, 7(8), 9288–9295. https://doi.org/10.18632/oncotarget.7063
Lapa, C., Schreder, M., Schirbel, A., Samnick, S., Kortüm, K. M., Herrmann, K., Kropf, S., Einsele, H., Buck, A. K., Wester, H.-J., Knop, S., & Lückerath, K. (2017). [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma—Comparison to [18F]FDG and laboratory values. Theranostics, 7(1), 205–212. https://doi.org/10.7150/thno.16576
Lewis, R., Habringer, S., Kircher, M., Hefter, M., Peuker, C. A., Werner, R., Ademaj-Kospiri, V., Gäble, A., Weber, W., Wester, H.-J., Buck, A. K., Herhaus, P., Lapa, C., & Keller, U. (2021). Investigation of spleen CXCR4 expression by [68Ga]Pentixafor PET in a cohort of 145 solid cancer patients. EJNMMI Research, 11(1), 77. https://doi.org/10.1186/s13550-021-00822-6
Linde, P., Baues, C., Wegen, S., Trommer, M., Quaas, A., Rosenbrock, J., Celik, E., Marnitz, S., Bruns, C. J., Fischer, T., Schomaecker, K., Wester, H.-J., Drzezga, A., van Heek, L., & Kobe, C. (2021). Pentixafor PET/CT for imaging of chemokine receptor 4 expression in esophageal cancer – a first clinical approach. Cancer Imaging, 21. https://doi.org/10.1186/s40644-021-00391-w
Lüke, F., Blazquez, R., Yamaci, R. F., Lu, X., Pregler, B., Hannus, S., Menhart, K., Hellwig, D., Wester, H.-J., Kropf, S., Heudobler, D., Grosse, J., Moosbauer, J., Hutterer, M., Hau, P., Riemenschneider, M. J., Bayerlová, M., Bleckmann, A., Polzer, B., … Pukrop, T. (2018). Isolated metastasis of an EGFR-L858R-mutated NSCLC of the meninges: The potential impact of CXCL12/CXCR4 axis in EGFRmut NSCLC in diagnosis, follow-up and treatment. Oncotarget, 9(27), 18844–18857. https://doi.org/10.18632/oncotarget.24787
Luo, Y., Cao, X., Pan, Q., Li, J., Feng, J., & Li, F. (2019). 68Ga-pentixafor PET/CT for imaging of chemokine receptor-4 expression in Waldenström macroglobulinemia/lymphoplasmacytic lymphoma: Comparison to 18F-FDG PET/CT. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine. https://doi.org/10.2967/jnumed.119.226134
Luo, Y., Pan, Q., Feng, J., Cao, X., & Li, F. (2018). Chemokine Receptor CXCR4-Targeted PET/CT With 68Ga-Pentixafor Shows Superiority to 18F-FDG in a Patient With Waldenström Macroglobulinemia. Clinical Nuclear Medicine, 43(7), 548–550. https://doi.org/10.1097/RLU.0000000000002131
Mayerhoefer, M. E., Jaeger, U., Staber, P., Raderer, M., Wadsak, W., Pfaff, S., Kornauth, C., Senn, D., Weber, M., Wester, H.-J., Skrabs, C., & Haug, A. (2018). [68Ga]Ga-Pentixafor PET/MRI for CXCR4 Imaging of Chronic Lymphocytic Leukemia: Preliminary Results. Investigative Radiology, 53(7), 403–408. https://doi.org/10.1097/RLI.0000000000000469
Mayerhoefer, M. E., Raderer, M., Lamm, W., Pichler, V., Pfaff, S., Weber, M., Kiesewetter, B., Hacker, M., Kazianka, L., Staber, P. B., Wester, H.-J., Rohrbeck, J., Simonitsch-Klupp, I., & Haug, A. (2021). CXCR4 PET imaging of mantle cell lymphoma using [68Ga]Pentixafor: Comparison with [18F]FDG-PET. Theranostics, 11(2), 567–578. https://doi.org/10.7150/thno.48620
Mayerhoefer, M. E., Raderer, M., Lamm, W., Weber, M., Kiesewetter, B., Rohrbeck, J., Simonitsch-Klupp, I., Hacker, M., Leisser, A., Nics, L., Schmitl, S., Wester, H.-J., & Haug, A. (2022). CXCR4 PET/MRI for follow-up of gastric mucosa–associated lymphoid tissue lymphoma after first-line Helicobacter pylori eradication. Blood, 139(2), 240–244. https://doi.org/10.1182/blood.2021013239
Pan, Q., Cao, X., Luo, Y., Li, J., Feng, J., & Li, F. (2019). Chemokine receptor-4 targeted PET/CT with 68Ga-Pentixafor in assessment of newly diagnosed multiple myeloma: Comparison to 18F-FDG PET/CT. European Journal of Nuclear Medicine and Molecular Imaging. https://doi.org/10.1007/s00259-019-04605-z
Pan, Q., Luo, Y., Cao, X., Li, J., & Li, F. (2020). Posttreated POEMS Syndrome With Concurrent Follicular Lymphoma Revealed by 18F-FDG and 68Ga-Pentixafor PET/CT. Clinical Nuclear Medicine, 45(3), 220–222. https://doi.org/10.1097/RLU.0000000000002923
Pan, Q., Luo, Y., Cao, X., Ma, Y., & Li, F. (2018). Multiple Myeloma Presenting as a Superscan on 68Ga-Pentixafor PET/CT. Clinical Nuclear Medicine, 43(6), 462–463. https://doi.org/10.1097/RLU.0000000000002067
Pan, Q., Luo, Y., Zhang, Y., Chang, L., Li, J., Cao, X., Li, J., & Li, F. (2020). Preliminary evidence of imaging of chemokine receptor-4-targeted PET/CT with [68Ga]pentixafor in non-Hodgkin lymphoma: Comparison to [18F]FDG. EJNMMI Research, 10. https://doi.org/10.1186/s13550-020-00681-7
Philipp-Abbrederis, K., Herrmann, K., Knop, S., Schottelius, M., Eiber, M., Lückerath, K., Pietschmann, E., Habringer, S., Gerngroß, C., Franke, K., Rudelius, M., Schirbel, A., Lapa, C., Schwamborn, K., Steidle, S., Hartmann, E., Rosenwald, A., Kropf, S., Beer, A. J., … Keller, U. (2015). In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Molecular Medicine, 7(4), 477–487. https://doi.org/10.15252/emmm.201404698
Serfling, S. E., Lapa, C., Dreher, N., Hartrampf, P. E., Rowe, S. P., Higuchi, T., Schirbel, A., Weich, A., Hahner, S., Fassnacht, M., Buck, A. K., & Werner, R. A. (2022). Impact of Tumor Burden on Normal Organ Distribution in Patients Imaged with CXCR4-Targeted [68Ga]Ga-PentixaFor PET/CT. Molecular Imaging and Biology, 24(4), 659–665. https://doi.org/10.1007/s11307-022-01717-1
Shekhawat, A. S., Singh, B., Malhotra, P., Watts, A., Basher, R., Kaur, H., Hooda, M., & Radotra, B. D. (2022). Imaging CXCR4 receptors expression for staging multiple myeloma by using 68 Ga-Pentixafor PET/CT: Comparison with 18 F-FDG PET/CT. The British Journal of Radiology, 95(1136), 20211272. https://doi.org/10.1259/bjr.20211272
Starzer, A. M., Berghoff, A. S., Traub-Weidinger, T., Haug, A. R., Widhalm, G., Hacker, M., Rausch, I., Preusser, M., & Mayerhoefer, M. E. (2021). Assessment of Central Nervous System Lymphoma Based on CXCR4 Expression In Vivo Using 68Ga-Pentixafor PET/MRI. Clinical Nuclear Medicine, 46(1), 16–20. https://doi.org/10.1097/RLU.0000000000003404
Vag, T., Gerngross, C., Herhaus, P., Eiber, M., Philipp-Abbrederis, K., Graner, F.-P., Ettl, J., Keller, U., Wester, H.-J., & Schwaiger, M. (2016). First Experience with Chemokine Receptor CXCR4-Targeted PET Imaging of Patients with Solid Cancers. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 57(5), 741–746. https://doi.org/10.2967/jnumed.115.161034
Vag, T., Steiger, K., Rossmann, A., Keller, U., Noske, A., Herhaus, P., Ettl, J., Niemeyer, M., Wester, H.-J., & Schwaiger, M. (2018). PET imaging of chemokine receptor CXCR4 in patients with primary and recurrent breast carcinoma. EJNMMI Research, 8(1), 90. https://doi.org/10.1186/s13550-018-0442-0
Watts, A., Singh, B., Basher, R., Singh, H., Bal, A., Kapoor, R., Arora, S. K., Wester, H. J., Mittal, B. R., & Behera, D. (2017). 68Ga-Pentixafor PET/CT demonstrating higher CXCR4 density in small cell lung carcinoma than in non-small cell variant. European Journal of Nuclear Medicine and Molecular Imaging, 44(5), 909–910. https://doi.org/10.1007/s00259-017-3622-7
Watts, A., Singh, B., Singh, H., Kaur, H., Bal, A., Vohra, M., Arora, S. K., & Behera, D. (2022). 68Ga-Pentixafor PET/CT Demonstrating In Vivo CXCR4 Receptor Overexpression in Rare Lung Malignancies: Correlation with Histologic and Histochemical Findings. Journal of Nuclear Medicine Technology, 50(3), 278–281. https://doi.org/10.2967/jnmt.122.264141
Watts, A., Singh, B., Singh, H., Bal, A., Kaur, H., Dhanota, N., Arora, S. K., Mittal, B. R., & Behera, D. (2022). [68Ga]Ga-Pentixafor PET/CT imaging for in vivo CXCR4 receptor mapping in different lung cancer histologic sub-types: Correlation with quantitative receptors’ density by immunochemistry techniques. European Journal of Nuclear Medicine and Molecular Imaging. https://doi.org/10.1007/s00259-022-06059-2
Weich, A., Werner, R. A., Buck, A. K., Hartrampf, P. E., Serfling, S. E., Scheurlen, M., Wester, H.-J., Meining, A., Kircher, S., Higuchi, T., Pomper, M. G., Rowe, S. P., Lapa, C., & Kircher, M. (2021). CXCR4-Directed PET/CT in Patients with Newly Diagnosed Neuroendocrine Carcinomas. Diagnostics, 11(4). https://doi.org/10.3390/diagnostics11040605
Werner, R. A., Kircher, S., Higuchi, T., Kircher, M., Schirbel, A., Wester, H.-J., Buck, A. K., Pomper, M. G., Rowe, S. P., & Lapa, C. (2019). CXCR4-Directed Imaging in Solid Tumors. Frontiers in Oncology, 9, 770. https://doi.org/10.3389/fonc.2019.00770
Werner, R. A., Weich, A., Higuchi, T., Schmid, J. S., Schirbel, A., Lassmann, M., Wild, V., Rudelius, M., Kudlich, T., Herrmann, K., Scheurlen, M., Buck, A. K., Kropf, S., Wester, H.-J., & Lapa, C. (2017). Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors—A Triple Tracer Comparative Approach. Theranostics, 7(6), 1489–1498. https://doi.org/10.7150/thno.18754
Werner, R. A., Weich, A., Schirbel, A., Samnick, S., Buck, A. K., Higuchi, T., Wester, H.-J., & Lapa, C. (2017). Intraindividual tumor heterogeneity in NET - Further insight by C-X-C motif chemokine receptor 4-directed imaging. European Journal of Nuclear Medicine and Molecular Imaging, 44(3), 553–554. https://doi.org/10.1007/s00259-016-3566-3
Wester, H. J., Keller, U., Schottelius, M., Beer, A., Philipp-Abbrederis, K., Hoffmann, F., Šimeček, J., Gerngross, C., Lassmann, M., Herrmann, K., Pellegata, N., Rudelius, M., Kessler, H., & Schwaiger, M. (2015). Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics, 5(6), 618–630. https://doi.org/10.7150/thno.11251
Xu, L., Tetteh, G., Lipkova, J., Zhao, Y., Li, H., Christ, P., Piraud, M., Buck, A. K., Shi, K., & Menze, B. H. (2018). Automated Whole-Body Bone Lesion Detection for Multiple Myeloma on 68Ga-Pentixafor PET/CT Imaging Using Deep Learning Methods. Contrast Media & Molecular Imaging, 2018, 2391925. https://doi.org/10.1155/2018/2391925
Zhou, X., Dierks, A., Kertels, O., Kircher, M., Schirbel, A., Samnick, S., Buck, A. K., Knorz, S., Böckle, D., Scheller, L., Messerschmidt, J., Barakat, M., Kortüm, K. M., Rasche, L., Einsele, H., & Lapa, C. (2020). 18F-FDG, 11C-Methionine, and 68Ga-Pentixafor PET/CT in Patients with Smoldering Multiple Myeloma: Imaging Pattern and Clinical Features. Cancers, 12(8). https://doi.org/10.3390/cancers12082333
Cardiovascular
Derlin, T., Sedding, D. G., Dutzmann, J., Haghikia, A., König, T., Napp, L. C., Schütze, C., Owsianski-Hille, N., Wester, H.-J., Kropf, S., Thackeray, J. T., Bankstahl, J. P., Geworski, L., Ross, T. L., Bauersachs, J., & Bengel, F. M. (2018). Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [68Ga]pentixafor PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 45(11), 1934–1944. https://doi.org/10.1007/s00259-018-4076-2
Hess, A., Derlin, T., Koenig, T., Diekmann, J., Wittneben, A., Wang, Y., Wester, H.-J., Ross, T. L., Wollert, K. C., Bauersachs, J., Bengel, F. M., & Thackeray, J. T. (2020). Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4. European Heart Journal, 41(37), 3564–3575. https://doi.org/10.1093/eurheartj/ehaa598
Hyafil, F., Pelisek, J., Laitinen, I., Schottelius, M., Mohring, M., Döring, Y., van der Vorst, E. P. C., Kallmayer, M., Steiger, K., Poschenrieder, A., Notni, J., Fischer, J., Baumgartner, C., Rischpler, C., Nekolla, S. G., Weber, C., Eckstein, H.-H., Wester, H.-J., & Schwaiger, M. (2017). Imaging the Cytokine Receptor CXCR4 in Atherosclerotic Plaques with the Radiotracer 68Ga-Pentixafor for PET. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 58(3), 499–506. https://doi.org/10.2967/jnumed.116.179663
Kircher, M., Tran-Gia, J., Kemmer, L., Zhang, X., Schirbel, A., Werner, R. A., Buck, A. K., Wester, H.-J., Hacker, M., Lapa, C., & Li, X. (2020). Imaging Inflammation in Atherosclerosis with CXCR4-Directed 68Ga-Pentixafor PET/CT: Correlation with 18F-FDG PET/CT. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 61(5), 751–756. https://doi.org/10.2967/jnumed.119.234484
Lapa, C., Reiter, T., Werner, R. A., Ertl, G., Wester, H.-J., Buck, A. K., Bauer, W. R., & Herrmann, K. (2015). [(68)Ga]Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression After Myocardial Infarction. JACC. Cardiovascular Imaging, 8(12), 1466–1468. https://doi.org/10.1016/j.jcmg.2015.09.007
Lawal, I. O., Popoola, G. O., Mahapane, J., Kaufmann, J., Davis, C., Ndlovu, H., Maserumule, L. C., Mokoala, K. M. G., Bouterfa, H., Wester, H.-J., Zeevaart, J. R., & Sathekge, M. M. (2020). [68Ga]Ga-Pentixafor for PET Imaging of Vascular Expression of CXCR-4 as a Marker of Arterial Inflammation in HIV-Infected Patients: A Comparison with 18F[FDG] PET Imaging. Biomolecules, 10(12), 1629. https://doi.org/10.3390/biom10121629
Li, X., Heber, D., Leike, T., Beitzke, D., Lu, X., Zhang, X., Wei, Y., Mitterhauser, M., Wadsak, W., Kropf, S., Wester, H. J., Loewe, C., Hacker, M., & Haug, A. R. (2018). [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. European Journal of Nuclear Medicine and Molecular Imaging, 45(4), 558–566. https://doi.org/10.1007/s00259-017-3831-0
Li, X., Yu, W., Wollenweber, T., Lu, X., Wei, Y., Beitzke, D., Wadsak, W., Kropf, S., Wester, H. J., Haug, A. R., Zhang, X., & Hacker, M. (2019). [68Ga]Pentixafor PET/MR imaging of chemokine receptor 4 expression in the human carotid artery. European Journal of Nuclear Medicine and Molecular Imaging, 46(8), 1616–1625. https://doi.org/10.1007/s00259-019-04322-7
Rausch, I., Beitzke, D., Li, Xiang., Pfaff, S., Rasul, S., Haug, A. R., Mayerhoefer, M. E., Hacker, M., Beyer, T., & Cal-González, J. (2020). Accuracy of PET quantification in [68Ga]Ga-pentixafor PET/MR imaging of carotid plaques. Journal of Nuclear Cardiology. https://doi.org/10.1007/s12350-020-02257-3
Reiter, T., Kircher, M., Schirbel, A., Werner, R. A., Kropf, S., Ertl, G., Buck, A. K., Wester, H.-J., Bauer, W. R., & Lapa, C. (2018). Imaging of C-X-C Motif Chemokine Receptor CXCR4 Expression After Myocardial Infarction With [68Ga]Pentixafor-PET/CT in Correlation With Cardiac MRI. JACC. Cardiovascular Imaging, 11(10), 1541–1543. https://doi.org/10.1016/j.jcmg.2018.01.001
Rischpler, C., Nekolla, S. G., Kossmann, H., Dirschinger, R. J., Schottelius, M., Hyafil, F., Wester, H. J., Laugwitz, K. L., & Schwaiger, M. (2016). Upregulated myocardial CXCR4-expression after myocardial infarction assessed by simultaneous GA-68 pentixafor PET/MRI. Journal of Nuclear Cardiology: Official Publication of the American Society of Nuclear Cardiology, 23(1), 131–133. https://doi.org/10.1007/s12350-015-0347-5
Schmid, J. S., Schirbel, A., Buck, A. K., Kropf, S., Wester, H.-J., & Lapa, C. (2016). [68Ga]Pentixafor-Positron Emission Tomography/Computed Tomography Detects Chemokine Receptor CXCR4 Expression After Ischemic Stroke. Circulation. Cardiovascular Imaging, 9(9), e005217. https://doi.org/10.1161/CIRCIMAGING.116.005217
Thackeray, J. T., Derlin, T., Haghikia, A., Napp, L. C., Wang, Y., Ross, T. L., Schäfer, A., Tillmanns, J., Wester, H. J., Wollert, K. C., Bauersachs, J., & Bengel, F. M. (2015). Molecular Imaging of the Chemokine Receptor CXCR4 After Acute Myocardial Infarction. JACC. Cardiovascular Imaging, 8(12), 1417–1426. https://doi.org/10.1016/j.jcmg.2015.09.008
Weiberg, D., Thackeray, J. T., Daum, G., Sohns, J. M., Kropf, S., Wester, H.-J., Ross, T. L., Bengel, F. M., & Derlin, T. (2018). Clinical Molecular Imaging of Chemokine Receptor CXCR4 Expression in Atherosclerotic Plaque Using 68Ga-Pentixafor PET: Correlation with Cardiovascular Risk Factors and Calcified Plaque Burden. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 59(2), 266–272. https://doi.org/10.2967/jnumed.117.196485
Werner, R. A., Hess, A., Koenig, T., Diekmann, J., Derlin, T., Melk, A., Thackeray, J. T., Bauersachs, J., & Bengel, F. M. (2021). Molecular imaging of inflammation crosstalk along the cardio-renal axis following acute myocardial infarction. Theranostics, 11(16), 7984–7994. https://doi.org/10.7150/thno.61423
Werner, R. A., Koenig, T., Diekmann, J., Haghikia, A., Derlin, T., Thackeray, J. T., Napp, L. C., Wester, H.-J., Ross, T. L., Schaefer, A., Bauersachs, J., & Bengel, F. M. (2022). CXCR4-Targeted Imaging of Post-Infarct Myocardial Tissue Inflammation: Prognostic Value After Reperfused Myocardial Infarction. JACC: Cardiovascular Imaging, 15(2), 372–374. https://doi.org/10.1016/j.jcmg.2021.08.013
Inflammatory
Bouter, C., Meller, B., Sahlmann, C. O., Staab, W., Wester, H. J., Kropf, S., & Meller, J. (2018). 68Ga-Pentixafor PET/CT Imaging of Chemokine Receptor CXCR4 in Chronic Infection of the Bone: First Insights. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 59(2), 320–326. https://doi.org/10.2967/jnumed.117.193854
Bouter, Y., Meller, B., Sahlmann, C. O., Wolf, B. J., Langer, L., Bankstahl, J. P., Wester, H. J., Kropf, S., Meller, J., & Bouter, C. (2018). Immunohistochemical detection of chemokine receptor 4 expression in chronic osteomyelitis confirms specific uptake in 68Ga-Pentixafor-PET/CT. Nuklearmedizin. Nuclear Medicine, 57(5), 198–203. https://doi.org/10.3413/Nukmed-0971-18-04
Chen Z, Xue Q, Yao S. Nuclear Medicine Application of Pentixafor/Pentixather Targeting CXCR4 for Imaging and Therapy in Related Disease. (2023). Mini Rev Med Chem., 23(7),787-803. https://doi.org/10.2174/1389557523666221216095821
Cytawa, W., Kircher, S., Schirbel, A., Shirai, T., Fukushima, K., Buck, A. K., Wester, H.-J., & Lapa, C. (2018). Chemokine Receptor 4 Expression in Primary Sjögren’s Syndrome. Clinical Nuclear Medicine, 43(11), 835–836. https://doi.org/10.1097/RLU.0000000000002258
Derlin, T., Gueler, F., Bräsen, J. H., Schmitz, J., Hartung, D., Herrmann, T. R., Ross, T. L., Wacker, F., Wester, H.-J., Hiss, M., Haller, H., Bengel, F. M., & Hueper, K. (2017). Integrating MRI and Chemokine Receptor CXCR4-Targeted PET for Detection of Leukocyte Infiltration in Complicated Urinary Tract Infections After Kidney Transplantation. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 58(11), 1831–1837. https://doi.org/10.2967/jnumed.117.193037
Derlin, T., Wester, H.-J., Bengel, F. M., & Hueper, K. (2017). Visualization of Posttraumatic Splenosis on Chemokine Receptor CXCR4-Targeted PET/CT. Clinical Nuclear Medicine, 42(6), e317–e318. https://doi.org/10.1097/RLU.0000000000001590
Lambertini, A., Hartrampf, P. E., Higuchi, T., Serfling, S. E., Meybohm, P., Schirbel, A., Buck, A. K., & Werner, R. A. (2022). CXCR4-targeted molecular imaging after severe SARS-Cov-2 infection. European Journal of Nuclear Medicine and Molecular Imaging. https://doi.org/10.1007/s00259-022-05932-4
Lu, X., Calabretta, R., Wadsak, W., Haug, A. R., Mayerhöfer, M., Raderer, M., Zhang, X., Li, J., Hacker, M., & Li, X. (2022). Imaging Inflammation in Atherosclerosis with CXCR4-Directed [68Ga]PentixaFor PET/MRI—Compared with [18F]FDG PET/MRI. Life, 12(7), 1039. https://doi.org/10.3390/life12071039
Pan, Q., Luo, Y., Cao, X., Li, J., & Li, F. (2020). Pulmonary Cryptococcosis Accidentally Detected by 68Ga-Pentixafor PET/CT in a Patient With Multiple Myeloma. Clinical Nuclear Medicine, 45(5), 423–425. https://doi.org/10.1097/RLU.0000000000003004
Preclinical
Habringer, S., Lapa, C., Herhaus, P., Schottelius, M., Istvanffy, R., Steiger, K., Slotta-Huspenina, J., Schirbel, A., Hänscheid, H., Kircher, S., Buck, A. K., Götze, K., Vick, B., Jeremias, I., Schwaiger, M., Peschel, C., Oostendorp, R., Wester, H.-J., Grigoleit, G.-U., & Keller, U. (2018). Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics. Theranostics, 8(2), 369–383. https://doi.org/10.7150/thno.21397
Li, J., Peng, C., Guo, Z., Shi, C., Zhuang, R., Hong, X., Wang, X., Xu, D., Zhang, P., Zhang, D., Liu, T., Su, X., & Zhang, X. (2018). Radioiodinated Pentixather for SPECT Imaging of Expression of the Chemokine Receptor CXCR4 in Rat Myocardial-Infarction-Reperfusion Models. Analytical Chemistry, 90(15), 9614–9620. https://doi.org/10.1021/acs.analchem.8b02553
Schottelius, M., Osl, T., Poschenrieder, A., Hoffmann, F., Beykan, S., Hänscheid, H., Schirbel, A., Buck, A. K., Kropf, S., Schwaiger, M., Keller, U., Lassmann, M., & Wester, H.-J. (2017). [177Lu]pentixather: Comprehensive Preclinical Characterization of a First CXCR4-directed Endoradiotherapeutic Agent. Theranostics, 7(9), 2350–2362. https://doi.org/10.7150/thno.19119
Oncology
Demirkol, M. O., Özkan, A., Uçar, B., Wester, H.-J., & Ferhanoglu, B. (2021). Extramedullary Relapsed Multiple Myeloma Treatment With 177Lu-Labeled CXCR4 Endoradiotherapy and Dosimetric Results. Clinical Nuclear Medicine, Publish Ahead of Print. https://doi.org/10.1097/RLU.0000000000003705
Habringer, S., Lapa, C., Herhaus, P., Schottelius, M., Istvanffy, R., Steiger, K., Slotta-Huspenina, J., Schirbel, A., Hänscheid, H., Kircher, S., Buck, A. K., Götze, K., Vick, B., Jeremias, I., Schwaiger, M., Peschel, C., Oostendorp, R., Wester, H.-J., Grigoleit, G.-U., & Keller, U. (2018). Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics. Theranostics, 8(2), 369–383. https://doi.org/10.7150/thno.21397
Herrmann, K., Schottelius, M., Lapa, C., Osl, T., Poschenrieder, A., Hänscheid, H., Lückerath, K., Schreder, M., Bluemel, C., Knott, M., Keller, U., Schirbel, A., Samnick, S., Lassmann, M., Kropf, S., Buck, A. K., Einsele, H., Wester, H.-J., & Knop, S. (2016). First-in-Human Experience of CXCR4-Directed Endoradiotherapy with 177Lu- and 90Y-Labeled Pentixather in Advanced-Stage Multiple Myeloma with Extensive Intra- and Extramedullary Disease. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 57(2), 248–251. https://doi.org/10.2967/jnumed.115.167361
Lapa, C., Hänscheid, H., Kircher, M., Schirbel, A., Wunderlich, G., Werner, R. A., Samnick, S., Kotzerke, J., Einsele, H., Buck, A. K., Wester, H.-J., & Grigoleit, G. U. (2019). Feasibility of CXCR4-Directed Radioligand Therapy in Advanced Diffuse Large B-Cell Lymphoma. Journal of Nuclear Medicine, 60(1), 60–64. https://doi.org/10.2967/jnumed.118.210997
Lapa, C., Herrmann, K., Schirbel, A., Hänscheid, H., Lückerath, K., Schottelius, M., Kircher, M., Werner, R. A., Schreder, M., Samnick, S., Kropf, S., Knop, S., Buck, A. K., Einsele, H., Wester, H.-J., & Kortüm, K. M. (2017). CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed Multiple Myeloma. Theranostics, 7(6), 1589–1597. https://doi.org/10.7150/thno.19050
Lapa, C., Lückerath, K., Kircher, S., Hänscheid, H., Grigoleit, G. U., Rosenwald, A., Stolzenburg, A., Kropf, S., Einsele, H., Wester, H.-J., Buck, A. K., Kortüm, K. M., & Schirbel, A. (2019). Potential influence of concomitant chemotherapy on CXCR4 expression in receptor directed endoradiotherapy. British Journal of Haematology, 184(3), 440–443. https://doi.org/10.1111/bjh.15096
Maurer, S., Herhaus, P., Lippenmeyer, R., Hänscheid, H., Kircher, M., Schirbel, A., Maurer, H. C., Buck, A. K., Wester, H.-J., Einsele, H., Grigoleit, G.-U., Keller, U., & Lapa, C. (2019). Side Effects of CXC-Chemokine Receptor 4-Directed Endoradiotherapy with Pentixather Before Hematopoietic Stem Cell Transplantation. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 60(10), 1399–1405. https://doi.org/10.2967/jnumed.118.223420
Schottelius, M., Osl, T., Poschenrieder, A., Hoffmann, F., Beykan, S., Hänscheid, H., Schirbel, A., Buck, A. K., Kropf, S., Schwaiger, M., Keller, U., Lassmann, M., & Wester, H.-J. (2017). [177Lu]pentixather: Comprehensive Preclinical Characterization of a First CXCR4-directed Endoradiotherapeutic Agent. Theranostics, 7(9), 2350–2362. https://doi.org/10.7150/thno.19119
Inflammatory
Li, X., Kemmer, L., Zhang, X., Kircher, M., Buck, A. K., Wester, H.-J., Hacker, M., & Lapa, C. (2018). Anti-Inflammatory Effects on Atherosclerotic Lesions Induced by CXCR4-Directed Endoradiotherapy. Journal of the American College of Cardiology, 72(1), 122–123. https://doi.org/10.1016/j.jacc.2018.04.035
ABOUT RADIOPHARMACEUTICALS / NUCLEAR MEDICINE
Radiopharmaceuticals are drugs which are a combination of a vector, linker and radionuclide, each having a different function. The vector, e.g. a small molecule, peptide or antibody, is intended to specifically bind to a target tissue (target), e.g. a tumor. The more precisely the vector binds to the target and not to non-targeted tissues, organs or cells, the higher the medical benefit reducing side effects. The linker connects the vector to the radioactive payload to be delivered to the disease burden.
Depending on the type of radiation and the energy, radiopharmaceuticals can be used as a diagnostic agent (DX) or as a therapeutic agent (TX). When used as a diagnostic tool, PET (positron emission tomopraphy) or SPECT (single photon emission computed tomography) detect the radioactivity bound to the target tissue and provide visual information about the disease burden. When used as a therapeutic agent, the radiation and energy of the radionuclide (alpha or beta emitters) is used to incude DNA double strand breaks followed by cell death. Whereas the vector is often the same for the diagnostic and therapeutic agent the radionuclide differs in type of radiation and energy. This combination of diagnostic and therapeutic enables the THERANOSTIC approach of FIND, FIGHT and FOLLOW for a specific disease which offers effective personalised patient treatment.
Headquarter
Bismarckstraße 13
97080 Würzburg
Germany
Robert-Rössle-Str. 10
13125 Berlin
Germany
Mail info@pentixapharm.com