Pipeline

Our clinical pipeline consists of two compounds, PentixaFor and PentixaTher. PentixaFor is a small peptide-based Gallium-68 PET imaging agent that uniquely targets the C-X-C receptor, which is overexpressed on a variety of malignant diseases. This compound is deployed in two major programs, addressing distinct indications in Oncology and Cardiology. PentixaTher is the complementary therapeutic agent to PentixaFor, equipped with the high energy beta emitter Yttrium-90 used for radioligand therapy of hematological malignancies.

Clinical Assets

  • PentixaFor is currently tested in an EMA endorsed Phase III pivotal study for the staging of Marginal Zone Lymphoma (MZL), a subtype of Non-Hodgkin B Cell Lymphoma.

    The study anticipates enrolling 150 lymphoma patients across up to 30 participating European clinics, with the objective of enhancing the accuracy of staging and consequently the quality of treatment for MZL.

    Clinicaltrials.gov ID: NCT06125028

  • PentixaFor offers a new approach in identifying Primary Aldosteronism (PA), a condition linked to hypertension in a significant portion of adults in Western countries. Primary Aldosteronism is characterized by an excessive aldosterone production, usually from one adrenal gland, and accounts for 1-5% of hypertension cases. Once this malfunctioning gland is identified, patients can undergo an adrenalectomy, which will lead to complete biochemical normalization in the majority of patients.

  • PentixaTher the complementary therapeutic agent to PentixaFor, equipped with the high energy beta emitter Yttrium-90 for the treatment of Central Nervous System (CNS) Lymphoma. This compound is currently being evaluated in a dose-finding clinical Phase I/II study.

    (Clinicaltrials.gov ID: NCT06132737)

CXCR4 as target molecule

Our target protein is the G-protein-coupled receptor C-X-C motif chemokine receptor 4 (CXCR4). This receptor is involved in the regulation of a variety of processes such as the regulation of blood formation (haematopoiesis), the movement of stem cells (migration) and the formation of new blood vessels (angiogenesis). These processes take place in a healthy body, but if they degenerate, they contribute to the supply of oxygen and nutrients to tumors.

An increased occurrence of CXCR4 has been observed in benign tumors of the adrenal gland and in over 20 malignant cancers, in which the receptor is associated with tumor growth, metastasis and resistance to therapy. The receptor is therefore a suitable target molecule for the precise detection of tumors and their treatment.

Established and validated mode of action

A radioactive isotope (payload) is conjugated to a biologically active molecule, known as a ligand. This compound is then administered into the bloodstream via intravenous injection and will navigate to all the affected cells in the body, including small metastases. The choice of radioisotope determines the outcome: High-energy isotopes are used to kill the targeted cells, while low-energy isotopes are used for imaging.

Literature

CXCR4 is one of the most thoroughly researched targets of the last decade:

  • 9 Reviews, 2 method articles, >100 Publications on [68Ga]Ga-PentixaFor

  • More than 2,500 Patients have already been imaged with [68Ga]Ga-PentixaFor without any safety issues

  • Since 2024, 474 patients were diagnosed for PA with [68Ga]Ga-PentixaFor

To support academic research, PTX sponsors more than 20 investigator initiated clinical studies (IIS). Below you find an overview of the most important publications, listed by topic and area.

General Reviews


  1. Albano, D., Dondi, F., Bertagna, F., & Treglia, G. (2022). The Role of [68Ga]Ga-Pentixafor PET/CT or PET/MRI in Lymphoma: A Systematic Review. Cancers, 14(15), 3814. https://doi.org/10.3390/cancers14153814

  2. Buck, A. K., Stolzenburg, A., Hänscheid, H., Schirbel, A., Lückerath, K., Schottelius, M., Wester, H.-J., & Lapa, C. (2017). Chemokine receptor—Directed imaging and therapy. Methods (San Diego, Calif.), 130, 63–71. https://doi.org/10.1016/j.ymeth.2017.09.002

  3. Eiber, M., Kratochwil, C., Lapa, C., & Brenner, W. (2021). Nuklearmedizinische Theranostik. Der Onkologe. https://doi.org/10.1007/s00761-021-00956-1

  4. Hadebe, B., Sathekge, M. M., Aldous, C., & Vorster, M. (2022). Current Status of 68Ga-Pentixafor in Solid Tumours. Diagnostics, 12(9), 2135. https://doi.org/10.3390/diagnostics12092135

  5. Herrmann, K., Schwaiger, M., Lewis, J. S., Solomon, S. B., McNeil, B. J., Baumann, M., Gambhir, S. S., Hricak, H., & Weissleder, R. (2020). Radiotheranostics: A roadmap for future development. The Lancet Oncology, 21(3), e146–e156. https://doi.org/10.1016/S1470-2045(19)30821-6

  6. Jamet, B., Bailly, C., Carlier, T., Touzeau, C., Nanni, C., Zamagni, E., Barré, L., Michaud, A.-V., Chérel, M., Moreau, P., Bodet-Milin, C., & Kraeber-Bodéré, F. (2019). Interest of Pet Imaging in Multiple Myeloma. Frontiers in Medicine, 6, 69. https://doi.org/10.3389/fmed.2019.00069

  7. Kircher, M., Herhaus, P., Schottelius, M., Buck, A. K., Werner, R. A., Wester, H.-J., Keller, U., & Lapa, C. (2018). CXCR4-directed theranostics in oncology and inflammation. Annals of Nuclear Medicine, 32(8), 503–511. https://doi.org/10.1007/s12149-018-1290-8

  8. Man, F., Gawne, P. J., & T.M. de Rosales, R. (2019). Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Advanced Drug Delivery Reviews, 143, 134–160. https://doi.org/10.1016/j.addr.2019.05.012

  9. Mayerhoefer, M. E., Archibald, S. J., Messiou, C., Staudenherz, A., Berzaczy, D., & Schöder, H. (2020). MRI and PET/MRI in hematologic malignancies. Journal of Magnetic Resonance Imaging, 51(5), 1325–1335. https://doi.org/10.1002/jmri.26848

  10. Mesguich, C., Zanotti-Fregonara, P., & Hindié, E. (2016). New Perspectives Offered by Nuclear Medicine for the Imaging and Therapy of Multiple Myeloma. Theranostics, 6(2), 287–290. https://doi.org/10.7150/thno.14400

  11. Narula, J., Dilsizian, V., & Chandrashekhar, Y. (2015). Molecular Imaging: From Deep Pearl Diving to Enlightenment. JACC. Cardiovascular Imaging, 8(12), 1472–1474. https://doi.org/10.1016/j.jcmg.2015.11.004

  12. Pandit-Taskar, N. (2018). Functional Imaging Methods for Assessment of Minimal Residual Disease in Multiple Myeloma: Current Status and Novel ImmunoPET Based Methods. Seminars in Hematology, 55(1), 22–32. https://doi.org/10.1053/j.seminhematol.2018.02.009

  13. Schottelius, M., Herrmann, K., & Lapa, C. (2021). In Vivo Targeting of CXCR4-New Horizons. Cancers, 13(23), Article 23. https://doi.org/10.3390/cancers13235920

  14. Toczek, J., & Riou, L. (2020). Considerations on PET/MR imaging of carotid plaque inflammation with 68Ga-Pentixafor. Journal of Nuclear Cardiology. https://doi.org/10.1007/s12350-020-02354-3

  15. Walenkamp, A. M. E., Lapa, C., Herrmann, K., & Wester, H.-J. (2017). CXCR4 Ligands: The Next Big Hit? Journal of Nuclear Medicine, 58(Supplement 2), 77S-82S. https://doi.org/10.2967/jnumed.116.186874

PentixaFor


Preclinical

  1. Demmer, O., Dijkgraaf, I., Schumacher, U., Marinelli, L., Cosconati, S., Gourni, E., Wester, H.-J., & Kessler, H. (2011). Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4. Journal of Medicinal Chemistry, 54(21), 7648–7662. https://doi.org/10.1021/jm2009716

  2. Demmer, O., Gourni, E., Schumacher, U., Kessler, H., & Wester, H.-J. (2011). PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem, 6(10), 1789–1791. https://doi.org/10.1002/cmdc.201100320

  3. Derlin, T., Sedding, D. G., Dutzmann, J., Haghikia, A., König, T., Napp, L. C., Schütze, C., Owsianski-Hille, N., Wester, H.-J., Kropf, S., Thackeray, J. T., Bankstahl, J. P., Geworski, L., Ross, T. L., Bauersachs, J., & Bengel, F. M. (2018). Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [68Ga]pentixafor PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 45(11), 1934–1944. https://doi.org/10.1007/s00259-018-4076-2

  4. Grosse, G. M., Bascuñana, P., Schulz-Schaeffer, W. J., Teebken, O. E., Wilhelmi, M., Worthmann, H., Ross, T. L., Wester, H.-J., Kropf, S., Derlin, T., Bengel, F. M., Bankstahl, J. P., & Weissenborn, K. (2018). Targeting Chemokine Receptor CXCR4 and Translocator Protein for Characterization of High-Risk Plaque in Carotid Stenosis Ex Vivo. Stroke, 49(8), 1988–1991. https://doi.org/10.1161/STROKEAHA.118.021070

  5. Gourni, E., Demmer, O., Schottelius, M., D’Alessandria, C., Schulz, S., Dijkgraaf, I., Schumacher, U., Schwaiger, M., Kessler, H., & Wester, H.-J. (2011). PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 52(11), 1803–1810. https://doi.org/10.2967/jnumed.111.098798

  6. Habringer, S., Lapa, C., Herhaus, P., Schottelius, M., Istvanffy, R., Steiger, K., Slotta-Huspenina, J., Schirbel, A., Hänscheid, H., Kircher, S., Buck, A. K., Götze, K., Vick, B., Jeremias, I., Schwaiger, M., Peschel, C., Oostendorp, R., Wester, H.-J., Grigoleit, G.-U., & Keller, U. (2018). Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics. Theranostics, 8(2), 369–383. https://doi.org/10.7150/thno.21397

  7. Herhaus, P., Habringer, S., Vag, T., Steiger, K., Slotta-Huspenina, J., Gerngroß, C., Wiestler, B., Wester, H.-J., Schwaiger, M., & Keller, U. (2017). Response assessment with the CXCR4-directed positron emission tomography tracer [68Ga]Pentixafor in a patient with extranodal marginal zone lymphoma of the orbital cavities. EJNMMI Research, 7(1), 51. https://doi.org/10.1186/s13550-017-0294-z

  8. Herrmann, K., Lapa, C., Wester, H.-J., Schottelius, M., Schiepers, C., Eberlein, U., Bluemel, C., Keller, U., Knop, S., Kropf, S., Schirbel, A., Buck, A. K., & Lassmann, M. (2015). Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 56(3), 410–416. https://doi.org/10.2967/jnumed.114.151647

  9. Hyafil, F., Pelisek, J., Laitinen, I., Schottelius, M., Mohring, M., Döring, Y., van der Vorst, E. P. C., Kallmayer, M., Steiger, K., Poschenrieder, A., Notni, J., Fischer, J., Baumgartner, C., Rischpler, C., Nekolla, S. G., Weber, C., Eckstein, H.-H., Wester, H.-J., & Schwaiger, M. (2017). Imaging the Cytokine Receptor CXCR4 in Atherosclerotic Plaques with the Radiotracer 68Ga-Pentixafor for PET. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 58(3), 499–506. https://doi.org/10.2967/jnumed.116.179663

  10. Liu, D., Li, M., Bellizzi, A., Menda, Y., Lee, D., Nourmahnad, K., Ghobrial, S., Schultz, M., & ODorisio, M. S. (2018). Preclinical evaluation of CXCR4 as novel radio-theranostic target for high grade neuroendocrine and neuroblastoma tumors. Journal of Nuclear Medicine, 59(supplement 1), 1313–1313.

  11. Martin, R., Jüttler, S., Müller, M., & Wester, H.-J. (2014). Cationic eluate pretreatment for automated synthesis of [68Ga]CPCR4.2. Nuclear Medicine and Biology, 41(1), 84–89. https://doi.org/10.1016/j.nucmedbio.2013.09.002

  12. Meester, E. J., de Blois, E., Krenning, B. J., van der Steen, A. F. W., Norenberg, J. P., van Gaalen, K., Bernsen, M. R., de Jong, M., & van der Heiden, K. (2021). Autoradiographical assessment of inflammation-targeting radioligands for atherosclerosis imaging: Potential for plaque phenotype identification. EJNMMI Research, 11(1), 27. https://doi.org/10.1186/s13550-021-00772-z

  13. Philipp-Abbrederis, K., Herrmann, K., Knop, S., Schottelius, M., Eiber, M., Lückerath, K., Pietschmann, E., Habringer, S., Gerngroß, C., Franke, K., Rudelius, M., Schirbel, A., Lapa, C., Schwamborn, K., Steidle, S., Hartmann, E., Rosenwald, A., Kropf, S., Beer, A. J., … Keller, U. (2015). In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Molecular Medicine, 7(4), 477–487. https://doi.org/10.15252/emmm.201404698

  14. Poschenrieder, A., Osl, T., Schottelius, M., Hoffmann, F., Wirtz, M., Schwaiger, M., & Wester, H.-J. (2016). First 18F-Labeled Pentixafor-Based Imaging Agent for PET Imaging of CXCR4 Expression In Vivo. Tomography (Ann Arbor, Mich.), 2(2), 85–93. https://doi.org/10.18383/j.tom.2016.00130

  15. Poschenrieder, A., Schottelius, M., Schwaiger, M., Kessler, H., & Wester, H.-J. (2016). The influence of different metal-chelate conjugates of pentixafor on the CXCR4 affinity. EJNMMI Research, 6(1), 36. https://doi.org/10.1186/s13550-016-0193-8

  16. Poschenrieder, A., Schottelius, M., Schwaiger, M., & Wester, H.-J. (2016). Preclinical evaluation of [(68)Ga]NOTA-pentixafor for PET imaging of CXCR4 expression in vivo—A comparison to [(68)Ga]pentixafor. EJNMMI Research, 6(1), 70. https://doi.org/10.1186/s13550-016-0227-2

  17. Schwarzenböck, S. M., Stenzel, J., Otto, T., Helldorff, H. V., Bergner, C., Kurth, J., Polei, S., Lindner, T., Rauer, R., Hohn, A., Hakenberg, O. W., Wester, H. J., Vollmar, B., & Krause, B. J. (2017). [68Ga]pentixafor for CXCR4 imaging in a PC-3 prostate cancer xenograft model—Comparison with [18F]FDG PET/CT, MRI and ex vivo receptor expression. Oncotarget, 8(56), 95606–95619. https://doi.org/10.18632/oncotarget.21024

  18. Spreckelmeyer, S., Schulze, O., & Brenner, W. (2020). Fully-automated production of [68Ga]Ga-PentixaFor on the module Modular Lab-PharmTracer. EJNMMI Radiopharmacy and Chemistry, 5. https://doi.org/10.1186/s41181-020-0091-2

  19. Watts, A., Chutani, S., Arora, D., Madivanane, V., Thakur, S., Kamboj, M., & Singh, B. (2021). Automated Radiosynthesis, Quality Control, and Biodistribution of Ga-68 Pentixafor: First Indian Experience. Indian Journal of Nuclear Medicine: IJNM: The Official Journal of the Society of Nuclear Medicine, India, 36(3), 237–244. https://doi.org/10.4103/ijnm.ijnm_216_20

  20. Wester, H. J., Keller, U., Schottelius, M., Beer, A., Philipp-Abbrederis, K., Hoffmann, F., Šimeček, J., Gerngross, C., Lassmann, M., Herrmann, K., Pellegata, N., Rudelius, M., Kessler, H., & Schwaiger, M. (2015). Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics, 5(6), 618–630. https://doi.org/10.7150/thno.11251

Endocrinology

  1. Baz, A. H. C., Wiel, E. van de, Groenewoud, H., Arntz, M., Gotthardt, M., Deinum, J., & Langenhuijsen, J. (2022). CXCR4-directed [68Ga]Ga-PentixaFor PET/CT versus adrenal vein sampling performance: A study protocol for a randomised two-step controlled diagnoStic Trial Ultimately comparing hypertenSion outcome in primary aldosteronism (CASTUS). BMJ Open, 12(8), e060779. https://doi.org/10.1136/bmjopen-2022-060779

  2. Cui, Y., Zhang, Y., Ding, J., Wang, H., Ma, X., Wang, O., Chang, X., Sun, H., Huo, L., & Tong, A. (2019). A Rare Aldosterone-Producing Adenoma Detected by 68Ga-pentixafor PET-CT: A Case Report and Literature Review. Frontiers in Endocrinology, 10, 810. https://doi.org/10.3389/fendo.2019.00810

  3. Ding, J., Tong, A., Zhang, Y., Wen, J., & Huo, L. (2020). Intense 68Ga-Pentixafor Activity in Aldosterone-Producing Adrenal Adenomas. Clinical Nuclear Medicine, 45(4), 336–339. https://doi.org/10.1097/RLU.0000000000002946

  4. Ding, J., Zhang, Y., Wen, J., Zhang, H., Wang, H., Luo, Y., Pan, Q., Zhu, W., Wang, X., Yao, S., Kreissl, M. C., Hacker, M., Tong, A., Huo, L., & Li, X. (2020). Imaging CXCR4 expression in patients with suspected primary hyperaldosteronism. European Journal of Nuclear Medicine and Molecular Imaging. https://doi.org/10.1007/s00259-020-04722-0

  5. Ding, J., Tong, A., Zhang, Y., Wen, J., Zhang, H., Hacker, M., Huo, L., & Li, X. (2021). Functional characterization of adrenocortical masses in nononcological patients using [68Ga]-pentixafor. Journal of Nuclear Medicine. https://doi.org/10.2967/jnumed.121.261964

  6. Gao, Y., Ding, J., Cui, Y., Li, T., Sun, H., Zhao, D., Zhang, Y., Huo, L., & Tong, A. (2022). Functional nodules in primary aldosteronism: Identification of CXCR4 expression with 68Ga-pentixafor PET/CT. European Radiology. https://doi.org/10.1007/s00330-022-09058-x

  7. Heinze, B., Fuss, C. T., Mulatero, P., Beuschlein, F., Reincke, M., Mustafa, M., Schirbel, A., Deutschbein, T., Williams, T. A., Rhayem, Y., Quinkler, M., Rayes, N., Monticone, S., Wild, V., Gomez-Sanchez, C. E., Reis, A.-C., Petersenn, S., Wester, H.-J., Kropf, S., … Hahner, S. (2018). Targeting CXCR4 (CXC Chemokine Receptor Type 4) for Molecular Imaging of Aldosterone-Producing Adenoma. Hypertension, 71(2), 317–325. https://doi.org/10.1161/HYPERTENSIONAHA.117.09975

  8. Hu, J., Xu, T., Shen, H., Song, Y., Yang, J., Zhang, A., Ding, H., Xing, N., Li, Z., Qiu, L., Ma, L., Yang, Y., Feng, Z., Cheng, Q., Wang, Z., Du, Z., He, W., Sun, Y., Li, Q., … Yang, S. (2022). 68Ga-Pentixafor PET/CT for Subtyping Diagnosis of Primary Aldosteronism: A Prospective, Diagnostic Accuracy Study [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-1909614/v1

  9. Hu, J., Xu, T., Shen, H., Song, Y., Yang, J., Zhang, A., Ding, H., Xing, N., Li, Z., Qiu, L., Ma, L., Yang, Y., Feng, Z., Du, Z., He, W., Sun, Y., Cai, J., Li, Q., Chen, Y., … Chongqing Primary Aldosteronism Study (CONPASS) Group. (2023). Accuracy of Gallium-68 Pentixafor Positron Emission Tomography–Computed Tomography for Subtyping Diagnosis of Primary Aldosteronism. JAMA Network Open, 6(2), e2255609. https://doi.org/10.1001/jamanetworkopen.2022.55609

  10. Shu, Q., Deng, M., Chen, Y., Liu, N., & Cai, L. (2022). Imaging Aldosterone-Producing Adrenocortical Carcinoma With 68 Ga-Pentixafor PET/CT. Clinical Nuclear Medicine, 47(8), e572–e573. https://doi.org/10.1097/RLU.0000000000004202

Oncology

  1. Avanesov, M., Karul, M., & Derlin, T. (2015). [68Ga-pentixafor PET: Clinical molecular imaging of chemokine receptor CXCR4 expression in multiple myeloma]. Der Radiologe, 55(10), 829–831. https://doi.org/10.1007/s00117-015-0011-8

  2. Bluemel, C., Hahner, S., Heinze, B., Fassnacht, M., Kroiss, M., Bley, T. A., Wester, H.-J., Kropf, S., Lapa, C., Schirbel, A., Buck, A. K., & Herrmann, K. (2017). Investigating the Chemokine Receptor 4 as Potential Theranostic Target in Adrenocortical Cancer Patients. Clinical Nuclear Medicine, 42(1), e29–e34. https://doi.org/10.1097/RLU.0000000000001435

  3. Breun, M., Monoranu, C. M., Kessler, A. F., Matthies, C., Löhr, M., Hagemann, C., Schirbel, A., Rowe, S. P., Pomper, M. G., Buck, A. K., Wester, H.-J., Ernestus, R.-I., & Lapa, C. (2019). [68Ga]-Pentixafor PET/CT for CXCR4-Mediated Imaging of Vestibular Schwannomas. Frontiers in Oncology, 9, 503. https://doi.org/10.3389/fonc.2019.00503

  4. Buck, A. K., Haug, A., Dreher, N., Lambertini, A., Higuchi, T., Lapa, C., Weich, A., Pomper, M. G., Wester, H.-J., Zehnder, A., Schirbel, A., Samnick, S., Hacker, M., Pichler, V., Hahner, S., Fassnacht, M., Einsele, H., Serfling, S., & Werner, R. A. (2022). Imaging of C-X-C Motif Chemokine Receptor 4 Expression in 690 Patients with Solid or Hematologic Neoplasms using 68 Ga-PentixaFor PET. Journal of Nuclear Medicine, jnumed.121.263693. https://doi.org/10.2967/jnumed.121.263693

  5. Chen, Z., Xue, Q., Huang, C., Yao, S., & Miao, W. (2021). Burkitt Lymphoma/Leukemia Presented on 68Ga-Pentixafor and 18F-FDG PET/CT. Clinical Nuclear Medicine. https://doi.org/10.1097/RLU.0000000000003750

  6. Chen, Z., Yang, A., Zhang, J., Chen, A., Zhang, Y., Huang, C., Chen, S., Yao, S., & Miao, W. (2021). CXCR4-Directed PET/CT with [68Ga]Pentixafor in Central Nervous System Lymphoma: A Comparison with [18F]FDG PET/CT. Molecular Imaging and Biology. https://doi.org/10.1007/s11307-021-01664-3

  7. Cui, Y., Zhang, Y., Ding, J., Wang, H., Ma, X., Wang, O., Chang, X., Sun, H., Huo, L., & Tong, A. (2019). A Rare Aldosterone-Producing Adenoma Detected by 68Ga-pentixafor PET-CT: A Case Report and Literature Review. Frontiers in Endocrinology, 10, 810. https://doi.org/10.3389/fendo.2019.00810

  8. Derlin, T., Jonigk, D., Bauersachs, J., & Bengel, F. M. (2016). Molecular Imaging of Chemokine Receptor CXCR4 in Non-Small Cell Lung Cancer Using 68Ga-Pentixafor PET/CT: Comparison With 18F-FDG. Clinical Nuclear Medicine, 41(4), e204-205. https://doi.org/10.1097/RLU.0000000000001092

  9. Duell, J., Krummenast, F., Schirbel, A., Klassen, P., Samnick, S., Rauert-Wunderlich, H., Rasche, L., Buck, A. K., Wester, H.-J., Rosenwald, A., Einsele, H., Topp, M. S., Lapa, C., & Kircher, M. (2021). Improved primary staging of marginal zone lymphoma by addition of CXCR4-directed PET/CT. Journal of Nuclear Medicine. https://doi.org/10.2967/jnumed.120.257279

  10. Fang, H.-Y., Münch, N. S., Schottelius, M., Ingermann, J., Liu, H., Schauer, M., Stangl, S., Multhoff, G., Steiger, K., Gerngroß, C., Jesinghaus, M., Weichert, W., Kühl, A. A., Sepulveda, A. R., Wester, H.-J., Wang, T. C., & Quante, M. (2018). CXCR4 Is a Potential Target for Diagnostic PET/CT Imaging in Barrett’s Dysplasia and Esophageal Adenocarcinoma. Clinical Cancer Research, 24(5), 1048–1061. https://doi.org/10.1158/1078-0432.CCR-17-1756

  11. Haug, A. R., Leisser, A., Wadsak, W., Mitterhauser, M., Pfaff, S., Kropf, S., Wester, H.-J., Hacker, M., Hartenbach, M., Kiesewetter-Wiederkehr, B., Raderer, M., & Mayerhoefer, M. E. (2019). Prospective non-invasive evaluation of CXCR4 expression for the diagnosis of MALT lymphoma using [68Ga]Ga-Pentixafor-PET/MRI. Theranostics, 9(12), 3653–3658. https://doi.org/10.7150/thno.31032

  12. Heinze, B., Fuss, C. T., Mulatero, P., Beuschlein, F., Reincke, M., Mustafa, M., Schirbel, A., Deutschbein, T., Williams, T. A., Rhayem, Y., Quinkler, M., Rayes, N., Monticone, S., Wild, V., Gomez-Sanchez, C. E., Reis, A.-C., Petersenn, S., Wester, H.-J., Kropf, S., … Hahner, S. (2018). Targeting CXCR4 (CXC Chemokine Receptor Type 4) for Molecular Imaging of Aldosterone-Producing Adenoma. Hypertension (Dallas, Tex.: 1979), 71(2), 317–325. https://doi.org/10.1161/HYPERTENSIONAHA.117.09975

  13. Herhaus, P., Habringer, S., Philipp-Abbrederis, K., Vag, T., Gerngross, C., Schottelius, M., Slotta-Huspenina, J., Steiger, K., Altmann, T., Weißer, T., Steidle, S., Schick, M., Jacobs, L., Slawska, J., Müller-Thomas, C., Verbeek, M., Subklewe, M., Peschel, C., Wester, H.-J., … Keller, U. (2016). Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia. Haematologica, 101(8), 932–940. https://doi.org/10.3324/haematol.2016.142976

  14. Herhaus, P., Habringer, S., Vag, T., Steiger, K., Slotta-Huspenina, J., Gerngroß, C., Wiestler, B., Wester, H.-J., Schwaiger, M., & Keller, U. (2017). Response assessment with the CXCR4-directed positron emission tomography tracer [68Ga]Pentixafor in a patient with extranodal marginal zone lymphoma of the orbital cavities. EJNMMI Research, 7(1), 51. https://doi.org/10.1186/s13550-017-0294-z

  15. Herhaus, P., Lipkova, J., Lammer, F., Yakushev, I., Vag, T., Slotta-Huspenina, J., Habringer, S., Lapa, C., Pukrop, T., Hellwig, D., Wiestler, B., Buck, A. K., Deckert, M., Wester, H.-J., Bassermann, F., Schwaiger, M., Weber, W. A., Menze, B., & Keller, U. (2020). CXCR4-targeted positron emission tomography imaging of central nervous system B-cell lymphoma. Journal of Nuclear Medicine, jnumed.120.241703. https://doi.org/10.2967/jnumed.120.241703

  16. Jacobs, S. M., Wesseling, P., de Keizer, B., Tolboom, N., Ververs, F. F. T., Krijger, G. C., Westerman, B. A., Snijders, T. J., Robe, P. A., & van der Kolk, A. G. (2022). CXCR4 expression in glioblastoma tissue and the potential for PET imaging and treatment with [68Ga]Ga-Pentixafor /[177Lu]Lu-Pentixather. European Journal of Nuclear Medicine and Molecular Imaging, 49(2), 481–491. https://doi.org/10.1007/s00259-021-05196-4

  17. Kiran, M. Y., Apaydin Arikan, E., Sanli, Y., Yegen, G., & Kuyumcu, S. (2021). CXCR4 Expression Demonstrated by 68Ga-Pentixafor PET/CT Imaging in a Case of Systemic Mastocytosis Mimicking Lymphoma. Clinical Nuclear Medicine. https://doi.org/10.1097/RLU.0000000000003817

  18. Kraus, S., Dierks, A., Rasche, L., Kertels, O., Kircher, M., Schirbel, A., Zovko, J., Steinbrunn, T., Tibes, R., Wester, H.-J., Buck, A. K., Einsele, H., Kortüm, K. M., Rosenwald, A., & Lapa, C. (2021). 68Ga-Pentixafor-PET/CT imaging represents a novel approach to detect chemokine receptor CXCR4 expression in myeloproliferative neoplasms. Journal of Nuclear Medicine. https://doi.org/10.2967/jnumed.121.262206

  19. Kraus, S., Klassen, P., Kircher, M., Dierks, A., Habringer, S., Gäble, A., Kortüm, K. M., Weinhold, N., Ademaj-Kospiri, V., Werner, R. A., Schirbel, A., Buck, A. K., Herhaus, P., Wester, H.-J., Rosenwald, A., Weber, W. A., Einsele, H., Keller, U., Rasche, L., & Lapa, C. (2022). Reduced splenic uptake on 68 Ga-Pentixafor-PET/CT imaging in multiple myeloma—A potential imaging biomarker for disease prognosis. Theranostics, 12(13), 5986–5994. https://doi.org/10.7150/thno.75847

  20. Kuyumcu, S., Yilmaz, E., Büyükkaya, F., Özkan, Z. G., & Ünal, S. N. (2018). Imaging of Chemokine Receptor CXCR4 in Mycosis Fungoides Using 68Ga-Pentixafor PET/CT. Clinical Nuclear Medicine, 43(8), 606–608. https://doi.org/10.1097/RLU.0000000000002166

  21. Kuyumcu, S., Isik, E. G., Tiryaki, T. O., Has-Simsek, D., Sanli, Y., Buyukkaya, F., Özkan, Z. G., Kalayoglu-Besisik, S., & Unal, S. N. (2021). Prognostic significance of 68Ga-Pentixafor PET/CT in multiple myeloma recurrence: A comparison to 18F-FDG PET/CT and laboratory results. Annals of Nuclear Medicine. https://doi.org/10.1007/s12149-021-01652-1

  22. Lapa, C., Kircher, S., Schirbel, A., Rosenwald, A., Kropf, S., Pelzer, T., Walles, T., Buck, A. K., Weber, W. A., Wester, H.-J., Herrmann, K., & Lückerath, K. (2017). Targeting CXCR4 with [68Ga]Pentixafor: A suitable theranostic approach in pleural mesothelioma? Oncotarget, 8(57), 96732–96737.  https://doi.org/10.18632/oncotarget.18235

  23. Lapa, C., Lückerath, K., Kleinlein, I., Monoranu, C. M., Linsenmann, T., Kessler, A. F., Rudelius, M., Kropf, S., Buck, A. K., Ernestus, R.-I., Wester, H.-J., Löhr, M., & Herrmann, K. (2016). (68)Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma. Theranostics, 6(3), 428–434. https://doi.org/10.7150/thno.13986

  24. Lapa, C., Lückerath, K., Rudelius, M., Schmid, J.-S., Schoene, A., Schirbel, A., Samnick, S., Pelzer, T., Buck, A. K., Kropf, S., Wester, H.-J., & Herrmann, K. (2016). [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer—Initial experience. Oncotarget, 7(8), 9288–9295. https://doi.org/10.18632/oncotarget.7063

  25. Lapa, C., Schreder, M., Schirbel, A., Samnick, S., Kortüm, K. M., Herrmann, K., Kropf, S., Einsele, H., Buck, A. K., Wester, H.-J., Knop, S., & Lückerath, K. (2017). [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma—Comparison to [18F]FDG and laboratory values. Theranostics, 7(1), 205–212. https://doi.org/10.7150/thno.16576

  26. Lewis, R., Habringer, S., Kircher, M., Hefter, M., Peuker, C. A., Werner, R., Ademaj-Kospiri, V., Gäble, A., Weber, W., Wester, H.-J., Buck, A. K., Herhaus, P., Lapa, C., & Keller, U. (2021). Investigation of spleen CXCR4 expression by [68Ga]Pentixafor PET in a cohort of 145 solid cancer patients. EJNMMI Research, 11(1), 77. https://doi.org/10.1186/s13550-021-00822-6

  27. Linde, P., Baues, C., Wegen, S., Trommer, M., Quaas, A., Rosenbrock, J., Celik, E., Marnitz, S., Bruns, C. J., Fischer, T., Schomaecker, K., Wester, H.-J., Drzezga, A., van Heek, L., & Kobe, C. (2021). Pentixafor PET/CT for imaging of chemokine receptor 4 expression in esophageal cancer – a first clinical approach. Cancer Imaging, 21. https://doi.org/10.1186/s40644-021-00391-w

  28. Lüke, F., Blazquez, R., Yamaci, R. F., Lu, X., Pregler, B., Hannus, S., Menhart, K., Hellwig, D., Wester, H.-J., Kropf, S., Heudobler, D., Grosse, J., Moosbauer, J., Hutterer, M., Hau, P., Riemenschneider, M. J., Bayerlová, M., Bleckmann, A., Polzer, B., … Pukrop, T. (2018). Isolated metastasis of an EGFR-L858R-mutated NSCLC of the meninges: The potential impact of CXCL12/CXCR4 axis in EGFRmut NSCLC in diagnosis, follow-up and treatment. Oncotarget, 9(27), 18844–18857. https://doi.org/10.18632/oncotarget.24787

  29. Luo, Y., Cao, X., Pan, Q., Li, J., Feng, J., & Li, F. (2019). 68Ga-pentixafor PET/CT for imaging of chemokine receptor-4 expression in Waldenström macroglobulinemia/lymphoplasmacytic lymphoma: Comparison to 18F-FDG PET/CT. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine. https://doi.org/10.2967/jnumed.119.226134

  30. Luo, Y., Pan, Q., Feng, J., Cao, X., & Li, F. (2018). Chemokine Receptor CXCR4-Targeted PET/CT With 68Ga-Pentixafor Shows Superiority to 18F-FDG in a Patient With Waldenström Macroglobulinemia. Clinical Nuclear Medicine, 43(7), 548–550. https://doi.org/10.1097/RLU.0000000000002131

  31. Mayerhoefer, M. E., Jaeger, U., Staber, P., Raderer, M., Wadsak, W., Pfaff, S., Kornauth, C., Senn, D., Weber, M., Wester, H.-J., Skrabs, C., & Haug, A. (2018). [68Ga]Ga-Pentixafor PET/MRI for CXCR4 Imaging of Chronic Lymphocytic Leukemia: Preliminary Results. Investigative Radiology, 53(7), 403–408. https://doi.org/10.1097/RLI.0000000000000469

  32. Mayerhoefer, M. E., Raderer, M., Lamm, W., Pichler, V., Pfaff, S., Weber, M., Kiesewetter, B., Hacker, M., Kazianka, L., Staber, P. B., Wester, H.-J., Rohrbeck, J., Simonitsch-Klupp, I., & Haug, A. (2021). CXCR4 PET imaging of mantle cell lymphoma using [68Ga]Pentixafor: Comparison with [18F]FDG-PET. Theranostics, 11(2), 567–578. https://doi.org/10.7150/thno.48620

  33. Mayerhoefer, M. E., Raderer, M., Lamm, W., Weber, M., Kiesewetter, B., Rohrbeck, J., Simonitsch-Klupp, I., Hacker, M., Leisser, A., Nics, L., Schmitl, S., Wester, H.-J., & Haug, A. (2022). CXCR4 PET/MRI for follow-up of gastric mucosa–associated lymphoid tissue lymphoma after first-line Helicobacter pylori eradication. Blood, 139(2), 240–244. https://doi.org/10.1182/blood.2021013239

  34. Pan, Q., Cao, X., Luo, Y., Li, J., Feng, J., & Li, F. (2019). Chemokine receptor-4 targeted PET/CT with 68Ga-Pentixafor in assessment of newly diagnosed multiple myeloma: Comparison to 18F-FDG PET/CT. European Journal of Nuclear Medicine and Molecular Imaging. https://doi.org/10.1007/s00259-019-04605-z

  35. Pan, Q., Luo, Y., Cao, X., Li, J., & Li, F. (2020). Posttreated POEMS Syndrome With Concurrent Follicular Lymphoma Revealed by 18F-FDG and 68Ga-Pentixafor PET/CT. Clinical Nuclear Medicine, 45(3), 220–222. https://doi.org/10.1097/RLU.0000000000002923

  36. Pan, Q., Luo, Y., Cao, X., Ma, Y., & Li, F. (2018). Multiple Myeloma Presenting as a Superscan on 68Ga-Pentixafor PET/CT. Clinical Nuclear Medicine, 43(6), 462–463. https://doi.org/10.1097/RLU.0000000000002067

  37. Pan, Q., Luo, Y., Zhang, Y., Chang, L., Li, J., Cao, X., Li, J., & Li, F. (2020). Preliminary evidence of imaging of chemokine receptor-4-targeted PET/CT with [68Ga]pentixafor in non-Hodgkin lymphoma: Comparison to [18F]FDG. EJNMMI Research, 10. https://doi.org/10.1186/s13550-020-00681-7

  38. Philipp-Abbrederis, K., Herrmann, K., Knop, S., Schottelius, M., Eiber, M., Lückerath, K., Pietschmann, E., Habringer, S., Gerngroß, C., Franke, K., Rudelius, M., Schirbel, A., Lapa, C., Schwamborn, K., Steidle, S., Hartmann, E., Rosenwald, A., Kropf, S., Beer, A. J., … Keller, U. (2015). In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Molecular Medicine, 7(4), 477–487. https://doi.org/10.15252/emmm.201404698

  39. Serfling, S. E., Lapa, C., Dreher, N., Hartrampf, P. E., Rowe, S. P., Higuchi, T., Schirbel, A., Weich, A., Hahner, S., Fassnacht, M., Buck, A. K., & Werner, R. A. (2022). Impact of Tumor Burden on Normal Organ Distribution in Patients Imaged with CXCR4-Targeted [68Ga]Ga-PentixaFor PET/CT. Molecular Imaging and Biology, 24(4), 659–665. https://doi.org/10.1007/s11307-022-01717-1

  40. Shekhawat, A. S., Singh, B., Malhotra, P., Watts, A., Basher, R., Kaur, H., Hooda, M., & Radotra, B. D. (2022). Imaging CXCR4 receptors expression for staging multiple myeloma by using 68 Ga-Pentixafor PET/CT: Comparison with 18 F-FDG PET/CT. The British Journal of Radiology, 95(1136), 20211272. https://doi.org/10.1259/bjr.20211272

  41. Starzer, A. M., Berghoff, A. S., Traub-Weidinger, T., Haug, A. R., Widhalm, G., Hacker, M., Rausch, I., Preusser, M., & Mayerhoefer, M. E. (2021). Assessment of Central Nervous System Lymphoma Based on CXCR4 Expression In Vivo Using 68Ga-Pentixafor PET/MRI. Clinical Nuclear Medicine, 46(1), 16–20. https://doi.org/10.1097/RLU.0000000000003404

  42. Vag, T., Gerngross, C., Herhaus, P., Eiber, M., Philipp-Abbrederis, K., Graner, F.-P., Ettl, J., Keller, U., Wester, H.-J., & Schwaiger, M. (2016). First Experience with Chemokine Receptor CXCR4-Targeted PET Imaging of Patients with Solid Cancers. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 57(5), 741–746. https://doi.org/10.2967/jnumed.115.161034

  43. Vag, T., Steiger, K., Rossmann, A., Keller, U., Noske, A., Herhaus, P., Ettl, J., Niemeyer, M., Wester, H.-J., & Schwaiger, M. (2018). PET imaging of chemokine receptor CXCR4 in patients with primary and recurrent breast carcinoma. EJNMMI Research, 8(1), 90. https://doi.org/10.1186/s13550-018-0442-0

  44. Watts, A., Singh, B., Basher, R., Singh, H., Bal, A., Kapoor, R., Arora, S. K., Wester, H. J., Mittal, B. R., & Behera, D. (2017). 68Ga-Pentixafor PET/CT demonstrating higher CXCR4 density in small cell lung carcinoma than in non-small cell variant. European Journal of Nuclear Medicine and Molecular Imaging, 44(5), 909–910. https://doi.org/10.1007/s00259-017-3622-7

  45. Watts, A., Singh, B., Singh, H., Kaur, H., Bal, A., Vohra, M., Arora, S. K., & Behera, D. (2022). 68Ga-Pentixafor PET/CT Demonstrating In Vivo CXCR4 Receptor Overexpression in Rare Lung Malignancies: Correlation with Histologic and Histochemical Findings. Journal of Nuclear Medicine Technology, 50(3), 278–281. https://doi.org/10.2967/jnmt.122.264141

  46. Watts, A., Singh, B., Singh, H., Bal, A., Kaur, H., Dhanota, N., Arora, S. K., Mittal, B. R., & Behera, D. (2022). [68Ga]Ga-Pentixafor PET/CT imaging for in vivo CXCR4 receptor mapping in different lung cancer histologic sub-types: Correlation with quantitative receptors’ density by immunochemistry techniques. European Journal of Nuclear Medicine and Molecular Imaging. https://doi.org/10.1007/s00259-022-06059-2

  47. Weich, A., Werner, R. A., Buck, A. K., Hartrampf, P. E., Serfling, S. E., Scheurlen, M., Wester, H.-J., Meining, A., Kircher, S., Higuchi, T., Pomper, M. G., Rowe, S. P., Lapa, C., & Kircher, M. (2021). CXCR4-Directed PET/CT in Patients with Newly Diagnosed Neuroendocrine Carcinomas. Diagnostics, 11(4). https://doi.org/10.3390/diagnostics11040605

  48. Werner, R. A., Kircher, S., Higuchi, T., Kircher, M., Schirbel, A., Wester, H.-J., Buck, A. K., Pomper, M. G., Rowe, S. P., & Lapa, C. (2019). CXCR4-Directed Imaging in Solid Tumors. Frontiers in Oncology, 9, 770. https://doi.org/10.3389/fonc.2019.00770

  49. Werner, R. A., Weich, A., Higuchi, T., Schmid, J. S., Schirbel, A., Lassmann, M., Wild, V., Rudelius, M., Kudlich, T., Herrmann, K., Scheurlen, M., Buck, A. K., Kropf, S., Wester, H.-J., & Lapa, C. (2017). Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors—A Triple Tracer Comparative Approach. Theranostics, 7(6), 1489–1498. https://doi.org/10.7150/thno.18754

  50. Werner, R. A., Weich, A., Schirbel, A., Samnick, S., Buck, A. K., Higuchi, T., Wester, H.-J., & Lapa, C. (2017). Intraindividual tumor heterogeneity in NET - Further insight by C-X-C motif chemokine receptor 4-directed imaging. European Journal of Nuclear Medicine and Molecular Imaging, 44(3), 553–554. https://doi.org/10.1007/s00259-016-3566-3

  51. Wester, H. J., Keller, U., Schottelius, M., Beer, A., Philipp-Abbrederis, K., Hoffmann, F., Šimeček, J., Gerngross, C., Lassmann, M., Herrmann, K., Pellegata, N., Rudelius, M., Kessler, H., & Schwaiger, M. (2015). Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics, 5(6), 618–630. https://doi.org/10.7150/thno.11251

  52. Xu, L., Tetteh, G., Lipkova, J., Zhao, Y., Li, H., Christ, P., Piraud, M., Buck, A. K., Shi, K., & Menze, B. H. (2018). Automated Whole-Body Bone Lesion Detection for Multiple Myeloma on 68Ga-Pentixafor PET/CT Imaging Using Deep Learning Methods. Contrast Media & Molecular Imaging, 2018, 2391925. https://doi.org/10.1155/2018/2391925

  53. Zhou, X., Dierks, A., Kertels, O., Kircher, M., Schirbel, A., Samnick, S., Buck, A. K., Knorz, S., Böckle, D., Scheller, L., Messerschmidt, J., Barakat, M., Kortüm, K. M., Rasche, L., Einsele, H., & Lapa, C. (2020). 18F-FDG, 11C-Methionine, and 68Ga-Pentixafor PET/CT in Patients with Smoldering Multiple Myeloma: Imaging Pattern and Clinical Features. Cancers, 12(8). https://doi.org/10.3390/cancers12082333

Cardiovascular

  1. Derlin, T., Sedding, D. G., Dutzmann, J., Haghikia, A., König, T., Napp, L. C., Schütze, C., Owsianski-Hille, N., Wester, H.-J., Kropf, S., Thackeray, J. T., Bankstahl, J. P., Geworski, L., Ross, T. L., Bauersachs, J., & Bengel, F. M. (2018). Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [68Ga]pentixafor PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 45(11), 1934–1944. https://doi.org/10.1007/s00259-018-4076-2

  2. Hess, A., Derlin, T., Koenig, T., Diekmann, J., Wittneben, A., Wang, Y., Wester, H.-J., Ross, T. L., Wollert, K. C., Bauersachs, J., Bengel, F. M., & Thackeray, J. T. (2020). Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4. European Heart Journal, 41(37), 3564–3575. https://doi.org/10.1093/eurheartj/ehaa598

  3. Hyafil, F., Pelisek, J., Laitinen, I., Schottelius, M., Mohring, M., Döring, Y., van der Vorst, E. P. C., Kallmayer, M., Steiger, K., Poschenrieder, A., Notni, J., Fischer, J., Baumgartner, C., Rischpler, C., Nekolla, S. G., Weber, C., Eckstein, H.-H., Wester, H.-J., & Schwaiger, M. (2017). Imaging the Cytokine Receptor CXCR4 in Atherosclerotic Plaques with the Radiotracer 68Ga-Pentixafor for PET. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 58(3), 499–506. https://doi.org/10.2967/jnumed.116.179663

  4. Kircher, M., Tran-Gia, J., Kemmer, L., Zhang, X., Schirbel, A., Werner, R. A., Buck, A. K., Wester, H.-J., Hacker, M., Lapa, C., & Li, X. (2020). Imaging Inflammation in Atherosclerosis with CXCR4-Directed 68Ga-Pentixafor PET/CT: Correlation with 18F-FDG PET/CT. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 61(5), 751–756. https://doi.org/10.2967/jnumed.119.234484

  5. Lapa, C., Reiter, T., Werner, R. A., Ertl, G., Wester, H.-J., Buck, A. K., Bauer, W. R., & Herrmann, K. (2015). [(68)Ga]Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression After Myocardial Infarction. JACC. Cardiovascular Imaging, 8(12), 1466–1468. https://doi.org/10.1016/j.jcmg.2015.09.007

  6. Lawal, I. O., Popoola, G. O., Mahapane, J., Kaufmann, J., Davis, C., Ndlovu, H., Maserumule, L. C., Mokoala, K. M. G., Bouterfa, H., Wester, H.-J., Zeevaart, J. R., & Sathekge, M. M. (2020). [68Ga]Ga-Pentixafor for PET Imaging of Vascular Expression of CXCR-4 as a Marker of Arterial Inflammation in HIV-Infected Patients: A Comparison with 18F[FDG] PET Imaging. Biomolecules, 10(12), 1629. https://doi.org/10.3390/biom10121629

  7. Li, X., Heber, D., Leike, T., Beitzke, D., Lu, X., Zhang, X., Wei, Y., Mitterhauser, M., Wadsak, W., Kropf, S., Wester, H. J., Loewe, C., Hacker, M., & Haug, A. R. (2018). [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. European Journal of Nuclear Medicine and Molecular Imaging, 45(4), 558–566. https://doi.org/10.1007/s00259-017-3831-0

  8. Li, X., Yu, W., Wollenweber, T., Lu, X., Wei, Y., Beitzke, D., Wadsak, W., Kropf, S., Wester, H. J., Haug, A. R., Zhang, X., & Hacker, M. (2019). [68Ga]Pentixafor PET/MR imaging of chemokine receptor 4 expression in the human carotid artery. European Journal of Nuclear Medicine and Molecular Imaging, 46(8), 1616–1625. https://doi.org/10.1007/s00259-019-04322-7

  9. Rausch, I., Beitzke, D., Li, Xiang., Pfaff, S., Rasul, S., Haug, A. R., Mayerhoefer, M. E., Hacker, M., Beyer, T., & Cal-González, J. (2020). Accuracy of PET quantification in [68Ga]Ga-pentixafor PET/MR imaging of carotid plaques. Journal of Nuclear Cardiology. https://doi.org/10.1007/s12350-020-02257-3

  10. Reiter, T., Kircher, M., Schirbel, A., Werner, R. A., Kropf, S., Ertl, G., Buck, A. K., Wester, H.-J., Bauer, W. R., & Lapa, C. (2018). Imaging of C-X-C Motif Chemokine Receptor CXCR4 Expression After Myocardial Infarction With [68Ga]Pentixafor-PET/CT in Correlation With Cardiac MRI. JACC. Cardiovascular Imaging, 11(10), 1541–1543. https://doi.org/10.1016/j.jcmg.2018.01.001

  11. Rischpler, C., Nekolla, S. G., Kossmann, H., Dirschinger, R. J., Schottelius, M., Hyafil, F., Wester, H. J., Laugwitz, K. L., & Schwaiger, M. (2016). Upregulated myocardial CXCR4-expression after myocardial infarction assessed by simultaneous GA-68 pentixafor PET/MRI. Journal of Nuclear Cardiology: Official Publication of the American Society of Nuclear Cardiology, 23(1), 131–133. https://doi.org/10.1007/s12350-015-0347-5

  12. Schmid, J. S., Schirbel, A., Buck, A. K., Kropf, S., Wester, H.-J., & Lapa, C. (2016). [68Ga]Pentixafor-Positron Emission Tomography/Computed Tomography Detects Chemokine Receptor CXCR4 Expression After Ischemic Stroke. Circulation. Cardiovascular Imaging, 9(9), e005217. https://doi.org/10.1161/CIRCIMAGING.116.005217

  13. Thackeray, J. T., Derlin, T., Haghikia, A., Napp, L. C., Wang, Y., Ross, T. L., Schäfer, A., Tillmanns, J., Wester, H. J., Wollert, K. C., Bauersachs, J., & Bengel, F. M. (2015). Molecular Imaging of the Chemokine Receptor CXCR4 After Acute Myocardial Infarction. JACC. Cardiovascular Imaging, 8(12), 1417–1426. https://doi.org/10.1016/j.jcmg.2015.09.008

  14. Weiberg, D., Thackeray, J. T., Daum, G., Sohns, J. M., Kropf, S., Wester, H.-J., Ross, T. L., Bengel, F. M., & Derlin, T. (2018). Clinical Molecular Imaging of Chemokine Receptor CXCR4 Expression in Atherosclerotic Plaque Using 68Ga-Pentixafor PET: Correlation with Cardiovascular Risk Factors and Calcified Plaque Burden. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 59(2), 266–272. https://doi.org/10.2967/jnumed.117.196485

  15. Werner, R. A., Hess, A., Koenig, T., Diekmann, J., Derlin, T., Melk, A., Thackeray, J. T., Bauersachs, J., & Bengel, F. M. (2021). Molecular imaging of inflammation crosstalk along the cardio-renal axis following acute myocardial infarction. Theranostics, 11(16), 7984–7994. https://doi.org/10.7150/thno.61423

  16. Werner, R. A., Koenig, T., Diekmann, J., Haghikia, A., Derlin, T., Thackeray, J. T., Napp, L. C., Wester, H.-J., Ross, T. L., Schaefer, A., Bauersachs, J., & Bengel, F. M. (2022). CXCR4-Targeted Imaging of Post-Infarct Myocardial Tissue Inflammation: Prognostic Value After Reperfused Myocardial Infarction. JACC: Cardiovascular Imaging, 15(2), 372–374. https://doi.org/10.1016/j.jcmg.2021.08.013

Inflammatory

  1. Bouter, C., Meller, B., Sahlmann, C. O., Staab, W., Wester, H. J., Kropf, S., & Meller, J. (2018). 68Ga-Pentixafor PET/CT Imaging of Chemokine Receptor CXCR4 in Chronic Infection of the Bone: First Insights. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 59(2), 320–326. https://doi.org/10.2967/jnumed.117.193854

  2. Bouter, Y., Meller, B., Sahlmann, C. O., Wolf, B. J., Langer, L., Bankstahl, J. P., Wester, H. J., Kropf, S., Meller, J., & Bouter, C. (2018). Immunohistochemical detection of chemokine receptor 4 expression in chronic osteomyelitis confirms specific uptake in 68Ga-Pentixafor-PET/CT. Nuklearmedizin. Nuclear Medicine, 57(5), 198–203. https://doi.org/10.3413/Nukmed-0971-18-04

  3. Chen Z, Xue Q, Yao S. Nuclear Medicine Application of Pentixafor/Pentixather Targeting CXCR4 for Imaging and Therapy in Related Disease. (2023). Mini Rev Med Chem., 23(7),787-803.https://doi.org/10.2174/1389557523666221216095821

  4. Cytawa, W., Kircher, S., Schirbel, A., Shirai, T., Fukushima, K., Buck, A. K., Wester, H.-J., & Lapa, C. (2018). Chemokine Receptor 4 Expression in Primary Sjögren’s Syndrome. Clinical Nuclear Medicine, 43(11), 835–836. https://doi.org/10.1097/RLU.0000000000002258

  5. Derlin, T., Gueler, F., Bräsen, J. H., Schmitz, J., Hartung, D., Herrmann, T. R., Ross, T. L., Wacker, F., Wester, H.-J., Hiss, M., Haller, H., Bengel, F. M., & Hueper, K. (2017). Integrating MRI and Chemokine Receptor CXCR4-Targeted PET for Detection of Leukocyte Infiltration in Complicated Urinary Tract Infections After Kidney Transplantation. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 58(11), 1831–1837. https://doi.org/10.2967/jnumed.117.193037

  6. Derlin, T., Wester, H.-J., Bengel, F. M., & Hueper, K. (2017). Visualization of Posttraumatic Splenosis on Chemokine Receptor CXCR4-Targeted PET/CT. Clinical Nuclear Medicine, 42(6), e317–e318. https://doi.org/10.1097/RLU.0000000000001590

  7. Lambertini, A., Hartrampf, P. E., Higuchi, T., Serfling, S. E., Meybohm, P., Schirbel, A., Buck, A. K., & Werner, R. A. (2022). CXCR4-targeted molecular imaging after severe SARS-Cov-2 infection. European Journal of Nuclear Medicine and Molecular Imaging. https://doi.org/10.1007/s00259-022-05932-4

  8. Lu, X., Calabretta, R., Wadsak, W., Haug, A. R., Mayerhöfer, M., Raderer, M., Zhang, X., Li, J., Hacker, M., & Li, X. (2022). Imaging Inflammation in Atherosclerosis with CXCR4-Directed [68Ga]PentixaFor PET/MRI—Compared with [18F]FDG PET/MRI. Life, 12(7), 1039. https://doi.org/10.3390/life12071039

  9. Pan, Q., Luo, Y., Cao, X., Li, J., & Li, F. (2020). Pulmonary Cryptococcosis Accidentally Detected by 68Ga-Pentixafor PET/CT in a Patient With Multiple Myeloma. Clinical Nuclear Medicine, 45(5), 423–425. https://doi.org/10.1097/RLU.0000000000003004

PentixaTher


Preclinical

  1. Habringer, S., Lapa, C., Herhaus, P., Schottelius, M., Istvanffy, R., Steiger, K., Slotta-Huspenina, J., Schirbel, A., Hänscheid, H., Kircher, S., Buck, A. K., Götze, K., Vick, B., Jeremias, I., Schwaiger, M., Peschel, C., Oostendorp, R., Wester, H.-J., Grigoleit, G.-U., & Keller, U. (2018). Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics. Theranostics, 8(2), 369–383. https://doi.org/10.7150/thno.21397

  2. Li, J., Peng, C., Guo, Z., Shi, C., Zhuang, R., Hong, X., Wang, X., Xu, D., Zhang, P., Zhang, D., Liu, T., Su, X., & Zhang, X. (2018). Radioiodinated Pentixather for SPECT Imaging of Expression of the Chemokine Receptor CXCR4 in Rat Myocardial-Infarction-Reperfusion Models. Analytical Chemistry, 90(15), 9614–9620. https://doi.org/10.1021/acs.analchem.8b02553

  3. Schottelius, M., Osl, T., Poschenrieder, A., Hoffmann, F., Beykan, S., Hänscheid, H., Schirbel, A., Buck, A. K., Kropf, S., Schwaiger, M., Keller, U., Lassmann, M., & Wester, H.-J. (2017). [177Lu]pentixather: Comprehensive Preclinical Characterization of a First CXCR4-directed Endoradiotherapeutic Agent. Theranostics, 7(9), 2350–2362. https://doi.org/10.7150/thno.19119

Oncology

  1. Demirkol, M. O., Özkan, A., Uçar, B., Wester, H.-J., & Ferhanoglu, B. (2021). Extramedullary Relapsed Multiple Myeloma Treatment With 177Lu-Labeled CXCR4 Endoradiotherapy and Dosimetric Results. Clinical Nuclear Medicine, Publish Ahead of Print. https://doi.org/10.1097/RLU.0000000000003705

  2. Habringer, S., Lapa, C., Herhaus, P., Schottelius, M., Istvanffy, R., Steiger, K., Slotta-Huspenina, J., Schirbel, A., Hänscheid, H., Kircher, S., Buck, A. K., Götze, K., Vick, B., Jeremias, I., Schwaiger, M., Peschel, C., Oostendorp, R., Wester, H.-J., Grigoleit, G.-U., & Keller, U. (2018). Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics. Theranostics, 8(2), 369–383. https://doi.org/10.7150/thno.21397

  3. Herrmann, K., Schottelius, M., Lapa, C., Osl, T., Poschenrieder, A., Hänscheid, H., Lückerath, K., Schreder, M., Bluemel, C., Knott, M., Keller, U., Schirbel, A., Samnick, S., Lassmann, M., Kropf, S., Buck, A. K., Einsele, H., Wester, H.-J., & Knop, S. (2016). First-in-Human Experience of CXCR4-Directed Endoradiotherapy with 177Lu- and 90Y-Labeled Pentixather in Advanced-Stage Multiple Myeloma with Extensive Intra- and Extramedullary Disease. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 57(2), 248–251. https://doi.org/10.2967/jnumed.115.167361

  4. Lapa, C., Hänscheid, H., Kircher, M., Schirbel, A., Wunderlich, G., Werner, R. A., Samnick, S., Kotzerke, J., Einsele, H., Buck, A. K., Wester, H.-J., & Grigoleit, G. U. (2019). Feasibility of CXCR4-Directed Radioligand Therapy in Advanced Diffuse Large B-Cell Lymphoma. Journal of Nuclear Medicine, 60(1), 60–64. https://doi.org/10.2967/jnumed.118.210997

  5. Lapa, C., Herrmann, K., Schirbel, A., Hänscheid, H., Lückerath, K., Schottelius, M., Kircher, M., Werner, R. A., Schreder, M., Samnick, S., Kropf, S., Knop, S., Buck, A. K., Einsele, H., Wester, H.-J., & Kortüm, K. M. (2017). CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed Multiple Myeloma. Theranostics, 7(6), 1589–1597. https://doi.org/10.7150/thno.19050

  6. Lapa, C., Lückerath, K., Kircher, S., Hänscheid, H., Grigoleit, G. U., Rosenwald, A., Stolzenburg, A., Kropf, S., Einsele, H., Wester, H.-J., Buck, A. K., Kortüm, K. M., & Schirbel, A. (2019). Potential influence of concomitant chemotherapy on CXCR4 expression in receptor directed endoradiotherapy. British Journal of Haematology, 184(3), 440–443. https://doi.org/10.1111/bjh.15096

  7. Maurer, S., Herhaus, P., Lippenmeyer, R., Hänscheid, H., Kircher, M., Schirbel, A., Maurer, H. C., Buck, A. K., Wester, H.-J., Einsele, H., Grigoleit, G.-U., Keller, U., & Lapa, C. (2019). Side Effects of CXC-Chemokine Receptor 4-Directed Endoradiotherapy with Pentixather Before Hematopoietic Stem Cell Transplantation. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 60(10), 1399–1405. https://doi.org/10.2967/jnumed.118.223420

  8. Schottelius, M., Osl, T., Poschenrieder, A., Hoffmann, F., Beykan, S., Hänscheid, H., Schirbel, A., Buck, A. K., Kropf, S., Schwaiger, M., Keller, U., Lassmann, M., & Wester, H.-J. (2017). [177Lu]pentixather: Comprehensive Preclinical Characterization of a First CXCR4-directed Endoradiotherapeutic Agent. Theranostics, 7(9), 2350–2362. https://doi.org/10.7150/thno.19119

Inflammatory

  1. Li, X., Kemmer, L., Zhang, X., Kircher, M., Buck, A. K., Wester, H.-J., Hacker, M., & Lapa, C. (2018). Anti-Inflammatory Effects on Atherosclerotic Lesions Induced by CXCR4-Directed Endoradiotherapy. Journal of the American College of Cardiology, 72(1), 122–123. https://doi.org/10.1016/j.jacc.2018.04.035